www.vorkurse.de
Ein Projekt von vorhilfe.de
Die Online-Kurse der Vorhilfe

E-Learning leicht gemacht.
Hallo Gast!einloggen | registrieren ]
Startseite · Mitglieder · Teams · Forum · Wissen · Kurse · Impressum
Forenbaum
^ Forenbaum
Status Mathe-Vorkurse
  Status Organisatorisches
  Status Schule
    Status Wiederholung Algebra
    Status Einführung Analysis
    Status Einführung Analytisc
    Status VK 21: Mathematik 6.
    Status VK 37: Kurvendiskussionen
    Status VK Abivorbereitungen
  Status Universität
    Status Lerngruppe LinAlg
    Status VK 13 Analysis I FH
    Status Algebra 2006
    Status VK 22: Algebra 2007
    Status GruMiHH 06
    Status VK 58: Algebra 1
    Status VK 59: Lineare Algebra
    Status VK 60: Analysis
    Status Wahrscheinlichkeitst

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "VK 13 Analysis I FH Reg" - Konvergenz-Kriterien
Konvergenz-Kriterien < VK 13 Analysis I FH < Universität < Vorkurse < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "VK 13 Analysis I FH Reg"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Konvergenz-Kriterien: Frage (für Interessierte)
Status: (Frage) für Interessierte Status 
Datum: 18:27 Di 11.12.2007
Autor: Sajuri

Aufgabe
Welche der folgenden Reihen konvergiert, konvergiert absolut oder divergiert? [mm] k\in\IN [/mm]

a) [mm] \summe_{k=1}^{\infty}\vektor{2k\\ k}^{-1} [/mm]

b) [mm] \summe_{k=1}^{\infty}\bruch{k+4}{2k^2-3k+3} [/mm]

Hallo zusammen!

Mit diesen Aufgaben komme ich nicht klar.
Ich habe schon alles probiert, klappt  aber nichts
a) Hier habe ich versucht umzuformen und habe gekriegt, dass es überhaupt nicht Reihe.
[mm] \vektor{2k\\ k}^{-1} [/mm] = [mm] \bruch{2k!}{k!*(2k-k!)}^{-1}=1^{-1}=1 [/mm]
b) mit Quotienten-Kriterium keine Aussage möglich, weil [mm] |\bruch{a_{k+1}}{a_{k}}|=1 [/mm]

Bitte helft mir




        
Bezug
Konvergenz-Kriterien: Doppelpost
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 19:18 Di 11.12.2007
Autor: Loddar

Hallo Sajuri!


Bitte keine Doppelposts hier einstellen. Du hast diese Frage bereits hier gestellt und sogar beantwortet bekommen.


Gruß
Loddar


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "VK 13 Analysis I FH Reg"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorkurse.de
[ Startseite | Mitglieder | Teams | Forum | Wissen | Kurse | Impressum ]