www.vorkurse.de
Ein Projekt von vorhilfe.de
Die Online-Kurse der Vorhilfe

E-Learning leicht gemacht.
Hallo Gast!einloggen | registrieren ]
Startseite · Mitglieder · Teams · Forum · Wissen · Kurse · Impressum
Forenbaum
^ Forenbaum
Status Mathe-Vorkurse
  Status Organisatorisches
  Status Schule
    Status Wiederholung Algebra
    Status Einführung Analysis
    Status Einführung Analytisc
    Status VK 21: Mathematik 6.
    Status VK 37: Kurvendiskussionen
    Status VK Abivorbereitungen
  Status Universität
    Status Lerngruppe LinAlg
    Status VK 13 Analysis I FH
    Status Algebra 2006
    Status VK 22: Algebra 2007
    Status GruMiHH 06
    Status VK 58: Algebra 1
    Status VK 59: Lineare Algebra
    Status VK 60: Analysis
    Status Wahrscheinlichkeitst

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Integrationstheorie" - Konvergenz+Integrale
Konvergenz+Integrale < Integrationstheorie < Maß/Integrat-Theorie < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Integrationstheorie"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Konvergenz+Integrale: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 19:11 Mi 25.05.2011
Autor: mathefreak89

Aufgabe
[mm] \integral_{0}^{\pi}cot(x)\, [/mm] dx

Hallo mal wieder :)

hab das erstmal umgeschrieben

[mm] \integral_{0}^{\pi}\bruch{cos(x)}{sin(x)}\, [/mm] dx

hab das ganze dann substituiert:

u=sin(x)        [mm] dx=\bruch{1}{cos(x)} [/mm]

also erhalte ich:

[mm] \integral_{0}^{\pi}\bruch{1}{u}\, [/mm] dx

mit der Stammfunktion

F(u)=ln(u) und somit für F(x)=ln(sin(x))

Wenn ich die Grenzen dann einsetze:

[mm] ln(sin(\pi))-ln(sin(0)) [/mm]

und so dann ja

ln(0)-ln(0)

in welcher Form kann ich dann aussagen darüber machen ob das ganze konvergiert???

mfg

        
Bezug
Konvergenz+Integrale: Antwort
Status: (Antwort) fertig Status 
Datum: 20:37 Mi 25.05.2011
Autor: reverend

Hallo MatheFreak,

da stimmt was nicht.

> [mm]\integral_{0}^{\pi}cot(x)\,[/mm] dx
>  Hallo mal wieder :)
>  
> hab das erstmal umgeschrieben
>  
> [mm]\integral_{0}^{\pi}\bruch{cos(x)}{sin(x)}\,[/mm] dx

[ok]

> hab das ganze dann substituiert:
>  
> u=sin(x)        [mm]dx=\bruch{1}{cos(x)}[/mm]

Naja. Das sollte schon heißen [mm] dx=\bruch{\blue{du}}{\cos{x}} [/mm]

> also erhalte ich:
>  
> [mm]\integral_{0}^{\pi}\bruch{1}{u}\,[/mm] dx

Gewiss nicht. Das Differential ist zu ersetzen (das hast Du nur zum Teil getan, indem Du den [mm] \cos{x} [/mm] säuberlich entfernt hast, aber das dx steht noch da). Außerdem sind auch die Grenzen zu substituieren. Und genau da beginnt das Problem.

> mit der Stammfunktion
>  
> F(u)=ln(u) und somit für F(x)=ln(sin(x))

Das ist richtig - außer dass die Integrationskonstante fehlt! -, aber eben oben nicht sauber aufgeschrieben.

> Wenn ich die Grenzen dann einsetze:
>  
> [mm]ln(sin(\pi))-ln(sin(0))[/mm]
>  
> und so dann ja
>  
> ln(0)-ln(0)
>  
> in welcher Form kann ich dann aussagen darüber machen ob
> das ganze konvergiert???

Tja. Da sind die beiden Randpunkte wohl gar nicht definiert. Darum sollst Du ja eine Konvergenzuntersuchung anstellen.

Deine Stammfunktion ist symmetrisch zu [mm] x=\bruch{\pi}{2} [/mm]

Es empfiehlt sich daher, das Integral an dieser Grenze aufzuteilen. Dann stellst Du fest, dass die beiden Teile gleich groß sind.
Es genügt also, einen davon zu untersuchen - und das geht.

Na dann, viel Erfolg.

Grüße
reverend


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Integrationstheorie"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorkurse.de
[ Startseite | Mitglieder | Teams | Forum | Wissen | Kurse | Impressum ]