www.vorkurse.de
Ein Projekt von vorhilfe.de
Die Online-Kurse der Vorhilfe

E-Learning leicht gemacht.
Hallo Gast!einloggen | registrieren ]
Startseite · Mitglieder · Teams · Forum · Wissen · Kurse · Impressum
Forenbaum
^ Forenbaum
Status Mathe-Vorkurse
  Status Organisatorisches
  Status Schule
    Status Wiederholung Algebra
    Status Einführung Analysis
    Status Einführung Analytisc
    Status VK 21: Mathematik 6.
    Status VK 37: Kurvendiskussionen
    Status VK Abivorbereitungen
  Status Universität
    Status Lerngruppe LinAlg
    Status VK 13 Analysis I FH
    Status Algebra 2006
    Status VK 22: Algebra 2007
    Status GruMiHH 06
    Status VK 58: Algebra 1
    Status VK 59: Lineare Algebra
    Status VK 60: Analysis
    Status Wahrscheinlichkeitst

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Folgen und Reihen" - Konvergente Teilfolgen
Konvergente Teilfolgen < Folgen und Reihen < eindimensional < reell < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Folgen und Reihen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Konvergente Teilfolgen: "Tipp"
Status: (Frage) beantwortet Status 
Datum: 13:00 Do 09.06.2016
Autor: Ardbeg

Aufgabe
a) Finden Sie alle konvergenten Teilfolgen der Folge:

1, -1, -1, 1, 1, 1, -1, -1, -1, -1, 1, 1, 1, 1, 1, [mm] \ldots [/mm]

b) Finden Sie alle konvergenten Teilfolgen der Folge:

1, 2, 2, 1, 2, 2, 3, 3, 3, 1, 2, 2, 3, 3, 3, 4, 4, 4, 4, [mm] \ldots [/mm]

c) Für welche reelen Zahlen [mm] \alpha [/mm] gibt es eine Teilfolge der Folge

[mm] \bruch{1}{2} [/mm] , [mm] \bruch{1}{3} [/mm] , [mm] \bruch{2}{3} [/mm] , [mm] \bruch{1}{4} [/mm] , [mm] \bruch{2}{4} [/mm] , [mm] \bruch{3}{4} [/mm] , [mm] \ldots [/mm]

die gegen [mm] \alpha [/mm] konvergiert.

Hallo!

Diese Aufgabe bereitet mir derzeit Kopfzerbrechen. Ich sehe keine Möglichkeit, tatsächlich alle Teilfolgen zu finden, bzw. eine Vorschrift, für die das zutrifft.
Nun aber mal zu dem was man denn wissen kann.

Ich ordne zur a) mal ein paar Werte zu: Sei [mm] (x_{n})_{n\in \IN} [/mm]
[mm] x_{1}=1 [/mm]
[mm] x_{2}=-1 [/mm]
[mm] x_{3}=-1 [/mm]
[mm] x_{4}=1 [/mm]
[mm] x_{5}=1 [/mm]
[mm] x_{6}=1 [/mm]
usw.

Nimmt man mal nur die Werte für den Häufungswert 1 raus erhält man: 1; 4; 5; 6; 11; 12; 13; 14; 15; 16; usw.
Alleine hierfür finde ich keine passende Vorschrift um eine Teilfolge zu definieren. Nimmt man die Anzahl der Werte bis -1 erreicht wird, erhält man das Muster: 1, 3, 5, usw.
Nur wüsste ich nicht wie ich daraus was gewinnen kann.
Mein weiterer Gedanke war, dass ich vielleicht erst einmal eine konvergente Teilfolge finde und dafür wollte ich mir die Vorschrift so definieren, dass sie immer den mittleren Wert der Pakete annimmt, sprich 1; 5; 13; 25; usw.
Das würde dann in etwa so aussehen: 1 [mm] \underbrace{\to}_{+4} [/mm] 5 [mm] \underbrace{\to}_{+4*2} [/mm] 13 [mm] \underbrace{\to}_{+4*3} [/mm] 25 [mm] \underbrace{\to}_{+4*4} [/mm] usw.
Aber auch hier endete der Versuch dann in einer Sackgasse.
Klar ist, dass jede Teilfolge konvergente Teilfolgen hat, dass soll man wohl auch ausnutzen. Die Frage ist nur wie?

Gruß
Ardbeg


        
Bezug
Konvergente Teilfolgen: Antwort
Status: (Antwort) fertig Status 
Datum: 13:38 Do 09.06.2016
Autor: fred97

Tipp:

Sei [mm] s_n:=1+2+....+n. [/mm]

Dann: [mm] s_1=1, s_2=3, s_3=6,.... [/mm]

[mm] s_n=\bruch{n(n+1)}{2} [/mm]

FRED

Bezug
                
Bezug
Konvergente Teilfolgen: Frage (überfällig)
Status: (Frage) überfällig Status 
Datum: 16:06 Do 09.06.2016
Autor: Ardbeg

Hallo Fred,

tut mir leid, doch leider weiß ich nicht wie ich diesen Tipp verwenden soll.


Ich verstehe was diese Teilfolge erzielt, ich bekomme jedes Mal das letzte Glied eines Pakets. Aber ich wüsste nicht, wie mir diese Sache helfen wird.
Mit [mm] (-1)^n [/mm] könnte ich den Vorzeichenwechsel zeigen, aber selbst wenn ich es in Verbindung mit [mm] s_{n} [/mm] versuche zu bringen, komme ich auf keinen Ansatz.

Ardbeg

Bezug
                        
Bezug
Konvergente Teilfolgen: Fälligkeit abgelaufen
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 16:20 Sa 11.06.2016
Autor: matux

$MATUXTEXT(ueberfaellige_frage)
Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Folgen und Reihen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorkurse.de
[ Startseite | Mitglieder | Teams | Forum | Wissen | Kurse | Impressum ]