www.vorkurse.de
Ein Projekt von vorhilfe.de
Die Online-Kurse der Vorhilfe

E-Learning leicht gemacht.
Hallo Gast!einloggen | registrieren ]
Startseite · Mitglieder · Teams · Forum · Wissen · Kurse · Impressum
Forenbaum
^ Forenbaum
Status Mathe-Vorkurse
  Status Organisatorisches
  Status Schule
    Status Wiederholung Algebra
    Status Einführung Analysis
    Status Einführung Analytisc
    Status VK 21: Mathematik 6.
    Status VK 37: Kurvendiskussionen
    Status VK Abivorbereitungen
  Status Universität
    Status Lerngruppe LinAlg
    Status VK 13 Analysis I FH
    Status Algebra 2006
    Status VK 22: Algebra 2007
    Status GruMiHH 06
    Status VK 58: Algebra 1
    Status VK 59: Lineare Algebra
    Status VK 60: Analysis
    Status Wahrscheinlichkeitst

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Uni-Analysis" - Konv. einer Potenzreihe
Konv. einer Potenzreihe < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Analysis"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Konv. einer Potenzreihe: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 21:32 Mo 16.08.2004
Autor: TheBigTicket

Hallo,

ich habe hier eine Potenzreihe, die mir Schwierigkeiten bereitet:

[mm]\sum_{n=1}^{\infty} {1 \br n} ({2x+1 \br 2x-1})^n , x \in \IR\ ohne\ { 1 \br 2}[/mm]

Erst mal zum Konvergenzradius der Reihe:

[mm]R = \limes_{n \to \infty} { a_n+1 \br a_n} = {n+1 \br n} = 1[/mm]

Laut Satz ist jetzt:

[mm]|{ 2x+1 \br 2x-1}| < 1: Konvergent[/mm]
[mm]|{ 2x+1 \br 2x-1}| > 1: Divergent[/mm]

Normalerweise (wenn [mm] (x-0)^n [/mm] stehen würde), würde ich jetzt die Stellen:
x+R und x-R auf Konvergenz untersuchen und dann mein Fazit ziehen.
Allerdings sieht mein "[mm](x - x_0)^n[/mm]" ganz offensichtlich ein bißchen anders aus.
Da mein [mm] a_n = { 1 \br n}[/mm] ist, daß [mm]|{ 2x+1 \br 2x-1}| = 1[/mm] sein muss (da man dann die harmonische Reihe und Divergenz hätte) und einmal [mm]|{ 2x+1 \br 2x-1}| = -1[/mm], da man dann mit dem Leibnitzkriterium Konvergenz nachweisen könnte.

Hat jemand eine Idee?



        
Bezug
Konv. einer Potenzreihe: Konvergenz der "einfachen" Potenzreihe
Status: (Antwort) fertig Status 
Datum: 22:01 Mo 16.08.2004
Autor: mathemaduenn

Hallo TheBigTicket,
Du betrachtest richtigerweise zunächst
[mm]\sum_{n=1}^{\infty} {1 \br n} {y}^n[/mm]
und stellst ja auch wenn ich richtig gelesen habe fest das die für [mm]-1\le y< 1[/mm] konvergiert. Was ist y in deiner Ursprungsreihe?
gruß
mathemaduenn

Bezug
                
Bezug
Konv. einer Potenzreihe: Konvergenz der "einfachen" Potenzreihe
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 22:55 Mo 16.08.2004
Autor: TheBigTicket

Wenn also:

[mm] -1 \le {2x+1 \br 2x-1} < 1 [/mm],

dann konvergiert die Reihe.



Bezug
                        
Bezug
Konv. einer Potenzreihe: Konvergenz der "einfachen" Potenzreihe
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 22:57 Mo 16.08.2004
Autor: mathemaduenn

Genau

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Analysis"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorkurse.de
[ Startseite | Mitglieder | Teams | Forum | Wissen | Kurse | Impressum ]