www.vorkurse.de
Ein Projekt von vorhilfe.de
Die Online-Kurse der Vorhilfe

E-Learning leicht gemacht.
Hallo Gast!einloggen | registrieren ]
Startseite · Mitglieder · Teams · Forum · Wissen · Kurse · Impressum
Forenbaum
^ Forenbaum
Status Mathe-Vorkurse
  Status Organisatorisches
  Status Schule
    Status Wiederholung Algebra
    Status Einführung Analysis
    Status Einführung Analytisc
    Status VK 21: Mathematik 6.
    Status VK 37: Kurvendiskussionen
    Status VK Abivorbereitungen
  Status Universität
    Status Lerngruppe LinAlg
    Status VK 13 Analysis I FH
    Status Algebra 2006
    Status VK 22: Algebra 2007
    Status GruMiHH 06
    Status VK 58: Algebra 1
    Status VK 59: Lineare Algebra
    Status VK 60: Analysis
    Status Wahrscheinlichkeitst

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Trigonometrische Funktionen" - Kontrolle
Kontrolle < Trigonometr. Fktn < Analysis < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Trigonometrische Funktionen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Kontrolle: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 15:55 Fr 27.02.2009
Autor: Dinker

Guten Nachmittag

Ich bin mir gerade sehr unsicher, ob ich da richtig vorgegangen bin, oder total falsch liege. Deshalb wäre ich dankbar, wenn sich einer die Mühe nehmen könnte drüber zu schauen.

[Dateianhang nicht öffentlich]

Bestimme Nullstellen
kx = [mm] \pi [/mm] + [mm] k\pi [/mm]

Nun kann ich hier einfach zwei nacheinander vorkommende Nullstellen nehmen. Einfachheitshalber nehme ich:
kx = 0
x = 0

kx = [mm] \pi [/mm]
x = [mm] \bruch{\pi}{x} [/mm]

f(x) = sin (kx)      
F(x) = -k cos(kx)

8 = -k cos [mm] \pi [/mm]
8 = -k
k = -8

Besten Dank
Gruss Dinker

Dateianhänge:
Anhang Nr. 1 (Typ: jpg) [nicht öffentlich]
        
Bezug
Kontrolle: Korrekturen
Status: (Antwort) fertig Status 
Datum: 16:03 Fr 27.02.2009
Autor: Loddar

Hallo Dinker!


Du musst aufpassen. Da der Buchstabe $k_$ bereits für den Parameter der Funktion vergeben ist, muss die allgemeine Darstellung der Nullstellen z.B. lauten:
$$k*x \ = \ [mm] \red{n}*\pi$$ [/mm]
Damit ergeben sich für $n \ = \ 0$ bzw. $n \ = \ 1$ die beiden Nullstellen:
[mm] $$x_1 [/mm] \ = \ 0$$
[mm] $$x_2 [/mm] \ = \ [mm] \bruch{\pi}{k}$$ [/mm]

Dann hast Du falsch integriert. Es muss heißen:
[mm] $$F_k(x) [/mm] \ = \ [mm] -\bruch{1}{k}*\cos(k*x)$$ [/mm]

Weitere "Falle": der Funktionswert der Stammfunktion [mm] $F_k(x) [/mm] \ = \ [mm] -\bruch{1}{k}*\cos(k*x)$ [/mm] an der Stelle $x \ = \ 0$ ist nicht 0:
[mm] $$F_k(0) [/mm] \ = \ [mm] -\bruch{1}{k}*\cos(k*0) [/mm] \ = \ [mm] -\bruch{1}{k}*\cos(0) [/mm] \ = \ [mm] -\bruch{1}{k}*1 [/mm] \ = \ [mm] -\bruch{1}{k}$$ [/mm]

Gruß
Loddar


Bezug
                
Bezug
Kontrolle: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 17:14 Fr 27.02.2009
Autor: Dinker

Hallo Loddar
Besten Dank

> Hallo Dinker!
>  
>
> Du musst aufpassen. Da der Buchstabe [mm]k_[/mm] bereits für den
> Parameter der Funktion vergeben ist, muss die allgemeine
> Darstellung der Nullstellen z.B. lauten:
>  [mm]k*x \ = \ \red{n}*\pi[/mm]
>  Damit ergeben sich für [mm]n \ = \ 0[/mm]
> bzw. [mm]n \ = \ 1[/mm] die beiden Nullstellen:
>  [mm]x_1 \ = \ 0[/mm]
>  [mm]x_2 \ = \ \bruch{\pi}{k}[/mm]
>  
> Dann hast Du falsch integriert. Es muss heißen:
>  [mm]F_k(x) \ = \ -\bruch{1}{k}*\cos(k*x)[/mm]

Ups, ich hab statt die Stammfunktion die Ableitung bestimmt, wie konnte mir das nur passieren...

Also ich substitutioniert mal: z = kx
f(x) = sinz
F(x) = -cos z
F(x) = -cos (z)
F(x) = [mm] -\bruch{1}{k}cos(kx) [/mm]



>  
> Weitere "Falle": der Funktionswert der Stammfunktion [mm]F_k(x) \ = \ -\bruch{1}{k}*\cos(k*x)[/mm]
> an der Stelle [mm]x \ = \ 0[/mm] ist nicht 0:
>  [mm]F_k(0) \ = \ -\bruch{1}{k}*\cos(k*0) \ = \ -\bruch{1}{k}*\cos(0) \ = \ -\bruch{1}{k}*1 \ = \ -\bruch{1}{k}[/mm]

10 = - [mm] \bruch{1}{k} [/mm] * cos [mm] (\pi) [/mm] + [mm] \bruch{1}{k} [/mm]
10 = -cos [mm] \pi [/mm] + 1
10k = 2
k = [mm] \bruch{1}{5} [/mm]

>  
> Gruß
>  Loddar
>  

Gruss Dinker


Bezug
                        
Bezug
Kontrolle: nun richtig
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 17:18 Fr 27.02.2009
Autor: Loddar

Hallo Dinker!


So stimmt es nun. Dieses Ergebnis habe ich auch erhalten.


Gruß
Loddar


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Trigonometrische Funktionen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorkurse.de
[ Startseite | Mitglieder | Teams | Forum | Wissen | Kurse | Impressum ]