www.vorkurse.de
Ein Projekt von vorhilfe.de
Die Online-Kurse der Vorhilfe

E-Learning leicht gemacht.
Hallo Gast!einloggen | registrieren ]
Startseite · Mitglieder · Teams · Forum · Wissen · Kurse · Impressum
Forenbaum
^ Forenbaum
Status Mathe-Vorkurse
  Status Organisatorisches
  Status Schule
    Status Wiederholung Algebra
    Status Einführung Analysis
    Status Einführung Analytisc
    Status VK 21: Mathematik 6.
    Status VK 37: Kurvendiskussionen
    Status VK Abivorbereitungen
  Status Universität
    Status Lerngruppe LinAlg
    Status VK 13 Analysis I FH
    Status Algebra 2006
    Status VK 22: Algebra 2007
    Status GruMiHH 06
    Status VK 58: Algebra 1
    Status VK 59: Lineare Algebra
    Status VK 60: Analysis
    Status Wahrscheinlichkeitst

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Partielle Differentialgleichungen" - Kontraktion
Kontraktion < partielle < Differentialgl. < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Partielle Differentialgleichungen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Kontraktion: Frage (überfällig)
Status: (Frage) überfällig Status 
Datum: 15:28 Sa 27.02.2010
Autor: Denny22

Hallo an alle,

ich muss die Lösbarkeit einer PDE zeigen: Die PDE besitzt (in vereinfachter Form) die Gestalt
     $Au+f(u)=0$
wobei [mm] $u:\IR^2\rightarrow\IR^m$, $m\in\IN$ [/mm] und [mm] $f:\IR^m\rightarrow\IR^m$ [/mm] nichtlinear und glatt (z.B. [mm] $f\in C^4$). [/mm] Unter $A$ stelle man sich der Einfachheithalber den Laplace-Operator [mm] $A=\triangle$ [/mm] vor. Aus der Linearisierung um $0$ erhalten wir
     $Au+f'(0)u=f'(0)u-f(u)$
Die Idee ist es nun der folgende Iterationsansatz:
     [mm] $Au^{k+1}+f'(0)u^{k+1}=f'(0)u^{k}-f(u^k)$, [/mm] für [mm] $k\in\IN$ [/mm]

1. Frage: Woher stammt diese Iterationswahl, dass ich ausgerechnet links die $k+1$ und rechts die $k$ Terme schreibe?

Die Idee ist es nun zu zeigen, dass diese Iteration eine Kontraktion beschreibt um den Banachschen Fixpunktsatz anwenden zu können. Doch für eine Kontraktion benötige ich doch eine Abbildung [mm] $\Phi:M\rightarrow [/mm] M$ ($M$ vollständiger metrischer Raum), von der ich zeigen muss, dass sie eine Kontraktion ist.

2. Frage: Wie ist die Abbildung [mm] $\Phi$ [/mm] in meinem Fall genau aus?

Beachtet, mich interessiert nicht wie $M$ gewählt werden soll, sondern wie ich [mm] $\Phi$ [/mm] wählen muss, denn [mm] $\Phi$ [/mm] muss aufgrund der Iteration doch etwas wie
     [mm] $\Phi(u^k)=u^{k+1}$ [/mm]
erfüllen. Ansonsten verstehe ich nämlich nicht, wie ich die Kontraktionseigenschaft
     [mm] $\Vert{u^{k+1}-v^{k+1}}\Vert_M\leqslant C\Vert{u^k-v^k}\Vert_M$, [/mm] für [mm] $k\in\IN$ [/mm]
nachweisen soll (wobei $0<M<1$).

Ich wäre sehr dankbar, wenn mir jemand auf die Sprünge helfen könnte.

Danke & Gruß

        
Bezug
Kontraktion: Fälligkeit abgelaufen
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 16:20 Mi 03.03.2010
Autor: matux

$MATUXTEXT(ueberfaellige_frage)
Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Partielle Differentialgleichungen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorkurse.de
[ Startseite | Mitglieder | Teams | Forum | Wissen | Kurse | Impressum ]