www.vorkurse.de
Ein Projekt von vorhilfe.de
Die Online-Kurse der Vorhilfe

E-Learning leicht gemacht.
Hallo Gast!einloggen | registrieren ]
Startseite · Mitglieder · Teams · Forum · Wissen · Kurse · Impressum
Forenbaum
^ Forenbaum
Status Mathe-Vorkurse
  Status Organisatorisches
  Status Schule
    Status Wiederholung Algebra
    Status Einführung Analysis
    Status Einführung Analytisc
    Status VK 21: Mathematik 6.
    Status VK 37: Kurvendiskussionen
    Status VK Abivorbereitungen
  Status Universität
    Status Lerngruppe LinAlg
    Status VK 13 Analysis I FH
    Status Algebra 2006
    Status VK 22: Algebra 2007
    Status GruMiHH 06
    Status VK 58: Algebra 1
    Status VK 59: Lineare Algebra
    Status VK 60: Analysis
    Status Wahrscheinlichkeitst

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Folgen und Reihen" - Konstruktion Potenzreihe
Konstruktion Potenzreihe < Folgen und Reihen < eindimensional < reell < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Folgen und Reihen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Konstruktion Potenzreihe: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 21:18 Di 06.04.2010
Autor: lok

Aufgabe
Geben Sie zu jedem r [mm] \in [0,\infty) [/mm] vereinigt mit [mm] {\infty} [/mm] eine Potenzreihe [mm] \summe_{n=0}^{\infty} an(z-z0)^{n}, [/mm] an sei Element der komplexen Zahlen, mit Konvergenzradius r an.

Guten Abend im Matheforum ;)

ich habe da diese Aufgabe gestellt bekommen bei der ich nicht so wirklich weiß wie ich rangehen könnte, wäre lieb, wenn mir jemand helfen könnte.

danke im Vorraus,
lg lok

Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.

        
Bezug
Konstruktion Potenzreihe: Antwort
Status: (Antwort) fertig Status 
Datum: 21:32 Di 06.04.2010
Autor: rrgg

Servus!

Les dir mal des durch! http://de.wikipedia.org/wiki/Potenzreihe
Da gibts auch zwei Formeln mit denen man den Konvergenzradius berechnen kann! Des würd ich mal gleich r setzen und mir überlegen wie ich dann die [mm] a_n [/mm] wählen muss.
Für Potenzreihen mit Konvergenzradius unendlich gibts relativ bekannte Beispiele; man kann sich aber auch einfach irgendwelche trivialen überlegen!


Bezug
                
Bezug
Konstruktion Potenzreihe: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 09:09 Mi 07.04.2010
Autor: lok

ok, dankeschön ;)

ich glaube ich habe etwas. Könnte dies hier eine richtige Lösung sein?

[mm] \summe_{n=0}^{\infty} \bruch{1}{(n+1!)} [/mm] -1 [mm] z_{n} [/mm]

was haltet ihr davon?

Liebe Grüße

Bezug
                
Bezug
Konstruktion Potenzreihe: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 07:46 Sa 10.04.2010
Autor: lok

Aufgabe
Es sei zu jedem r aus dem Intervall [mm] [0,\infty) [/mm] vereinigt mit [mm] \infty [/mm] eine Potenzreihe folgender Form  [mm] \summe_{n=0}^{\infty} an(z-z0)^{n} [/mm] mit Konvergenzradius r anzugeben.

Hey,

Als Lösung habe ich das anzubieten, bin mir allerdings nicht sicher, was haltet ihr davon?
$ [mm] \summe_{n=0}^{\infty} \bruch{1}{(n+1!)} [/mm] $ -1 $ [mm] z_{n} [/mm] $

LG

Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.

Bezug
                        
Bezug
Konstruktion Potenzreihe: nicht klar
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 09:54 Sa 10.04.2010
Autor: Loddar

Hallo lok!


> [mm]\summe_{n=0}^{\infty} \bruch{1}{(n+1!)}[/mm] -1 [mm]z_{n}[/mm]

Zum einen: fehlen da nicht ein paar Klammern?
Zum anderen: für welches r soll denn dieser Vorschlag nun sein?


Gruß
Loddar


Bezug
                                
Bezug
Konstruktion Potenzreihe: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 12:50 Sa 10.04.2010
Autor: lok

[mm] \summe_{n=0}^{\infty}( \bruch{1}{(n+1!)} [/mm]  -1)  [mm] z_{n} [/mm]

ich dächte eigentlich, dass ich mit dieser Gleichung alle r´s erwische (für unterschiedliche n)?

Bezug
                                        
Bezug
Konstruktion Potenzreihe: Antwort
Status: (Antwort) fertig Status 
Datum: 19:09 So 11.04.2010
Autor: steppenhahn

Hallo!

>  [mm]\summe_{n=0}^{\infty}( \bruch{1}{(n+1!)}[/mm]  -1)  [mm]z_{n}[/mm]
>
> ich dächte eigentlich, dass ich mit dieser Gleichung alle
> r´s erwische (für unterschiedliche n)?

Nein.
Es gibt bei dieser Formel keine "verschiedenen" n, denn die Laufvariable der Summe ist doch n !

Vermutlich (ich habe es nicht nachgerechnet) konvergiert deine Reihe mit Konvergenzradius $r = 1$, weil dein [mm] $a_{n} [/mm] = [mm] \left(\frac{1}{(n+1)!}-1\right)$ [/mm] ja gegen -1 konvergiert.

--------

Beginne die Aufgabe doch lieber so:

1. Reihe mit Konvergenzradius r=0.

Formel von Cauchy-Hadamard: $r = [mm] \frac{1}{\limsup_{n\to\infty}\sqrt[n]{|a_{n}|}}$. [/mm]

r wird Null, wenn der Nenner unendlich wird. Du musst also eine Folge [mm] $a_{n}$ [/mm] finden, für die [mm] $\sqrt[n]{|a_{n}|}$ [/mm] gegen unendlich konvergiert. Einfachsterweise könnte das [mm] $a_{n} [/mm] = [mm] n^{n}$ [/mm] sein.

Wie lautet dann deine Potenzreihe?

2. Reihe mit Konvergenzradius [mm] $r=\infty$. [/mm]

Sicher habt ihr da schon mindestens eine Reihe kennengelernt, zum Beispiel

[mm] $\exp(x) [/mm] = [mm] \sum_{n=0}^{\infty}\frac{x^{n}}{n!}$. [/mm]

Ansonsten wieder Formel benutzen und überlegen, wie ein [mm] $a_{n}$ [/mm] auszusehen hat, damit der Nenner 0 wird!

3. Reihe mit Konvergenzradius $0 < r < [mm] \infty$. [/mm]

Benutze hier wieder die Formel von Cauchy-Hadamard:

$r = [mm] \frac{1}{\limsup_{n\to\infty}\sqrt[n]{|a_{n}|}}$. [/mm]

Natürlich müssen wir jetzt systematisch eine Folge finden, die wir auf alles anwenden können, denn wir wollen ja nicht für jedes r ein Beispiel geben...

Benutze den Ansatz [mm] $a_{n} [/mm] = [mm] c^{n}$, [/mm] wobei c noch in Abhängigkeit von r zu bestimmen ist !

Grüße,
Stefan

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Folgen und Reihen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorkurse.de
[ Startseite | Mitglieder | Teams | Forum | Wissen | Kurse | Impressum ]