www.vorkurse.de
Ein Projekt von vorhilfe.de
Die Online-Kurse der Vorhilfe

E-Learning leicht gemacht.
Hallo Gast!einloggen | registrieren ]
Startseite · Mitglieder · Teams · Forum · Wissen · Kurse · Impressum
Forenbaum
^ Forenbaum
Status Mathe-Vorkurse
  Status Organisatorisches
  Status Schule
    Status Wiederholung Algebra
    Status Einführung Analysis
    Status Einführung Analytisc
    Status VK 21: Mathematik 6.
    Status VK 37: Kurvendiskussionen
    Status VK Abivorbereitungen
  Status Universität
    Status Lerngruppe LinAlg
    Status VK 13 Analysis I FH
    Status Algebra 2006
    Status VK 22: Algebra 2007
    Status GruMiHH 06
    Status VK 58: Algebra 1
    Status VK 59: Lineare Algebra
    Status VK 60: Analysis
    Status Wahrscheinlichkeitst

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Gewöhnliche Differentialgleichungen" - Konstantenvariation
Konstantenvariation < gewöhnliche < Differentialgl. < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Gewöhnliche Differentialgleichungen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Konstantenvariation: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 14:19 So 23.11.2008
Autor: marko1612

Aufgabe
Lösen Sie die inhomogene lineare Differenzialgleichung y" -2y'+y = [mm] \bruch{e^{t}}{t} [/mm] mittels Konstantenvariation und führen Sie die Probe aus.

Meine Lösung bisher:

y"-2y'+y=0   [mm] \to \lambda²-2\lambda+1=0 [/mm]

[mm] \lambda_{1,2} [/mm] = 1

[mm] y^{h}(t) [/mm] = [mm] C_{1}e^{t}+C_{2}e^{t} [/mm]

-------------------------------------------------------------------------------

y" -2y'+y = [mm] \bruch{e^{t}}{t} [/mm]

[mm] y_{1}(t) [/mm] = [mm] e^{t} [/mm]
[mm] y_{2}(t) [/mm] = [mm] e^{t} [/mm]


[mm] y^{inh}(t) [/mm] = [mm] C_{1}(t)e^{t}+C_{2}(t)e^{t} [/mm]



Bin nicht sicher ob soweit alles richtig ist und wie es weiter geht.

        
Bezug
Konstantenvariation: Antwort
Status: (Antwort) fertig Status 
Datum: 14:33 So 23.11.2008
Autor: schachuzipus

Hallo marko1612,

> Lösen Sie die inhomogene lineare Differenzialgleichung y"
> -2y'+y = [mm]\bruch{e^{t}}{t}[/mm] mittels Konstantenvariation und
> führen Sie die Probe aus.
>  Meine Lösung bisher:
>  
> y"-2y'+y=0   [mm]\to \lambda²-2\lambda+1=0[/mm]
>  
> [mm]\lambda_{1,2}[/mm] = 1 [ok]
>  
> [mm]y^{h}(t)[/mm] = [mm]C_{1}e^{t}+C_{2}e^{t}[/mm] [notok]

Achtung, es ist ja [mm] $\lambda=1$ [/mm] doppelte NST, das musst du bei der Basislösung berücksichtigen:

[mm] $y_h(t)=C_1e^t+C_2\red{\cdot{}t\cdot{}}e^{t}$ [/mm]


Damit dann nochmal die VdK ...

>  
> -------------------------------------------------------------------------------
>  
> y" -2y'+y = [mm]\bruch{e^{t}}{t}[/mm]
>  
> [mm]y_{1}(t)[/mm] = [mm]e^{t}[/mm]
>  [mm]y_{2}(t)[/mm] = [mm]e^{t}[/mm]
>  
>
> [mm]y^{inh}(t)[/mm] = [mm]C_{1}(t)e^{t}+C_{2}(t)e^{t}[/mm]
>  
>
>
> Bin nicht sicher ob soweit alles richtig ist und wie es
> weiter geht.

Es fehlt das t, dann 2mal ableiten, einsetzen und vgl. mit der Ausgangs-Dgl.


LG

schachuzipus

Bezug
                
Bezug
Konstantenvariation: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 14:52 So 23.11.2008
Autor: marko1612

Danke erstmal, aber wie funktioniert das mit der VdK genau. Unsere Professorin war leider nicht in der Lage das so zu erklären das man es versteht.

Bezug
                        
Bezug
Konstantenvariation: Antwort
Status: (Antwort) fertig Status 
Datum: 19:52 So 23.11.2008
Autor: MathePower

Hallo marko1612,

> Danke erstmal, aber wie funktioniert das mit der VdK genau.
> Unsere Professorin war leider nicht in der Lage das so zu
> erklären das man es versteht.

Der Ansatz lautet dann:

[mm]\left(1\right) \ y\left(t\right)=C_{1}\left(t\right)*e^{t}+C_{2}\left(t\right)*t*e^{t}[/mm]

Dann bildet man [mm]y'\left(t\right), \ y''\left(t\right)[/mm] unter der Zusatzbedingung

[mm] \left(2\right) \ C_{1}'\left(t\right)*e^{t}+C_{2}'\left(t\right)*t*e^{t}=0[/mm]

Demnach

[mm]y'\left(t\right)=C_{1}'*e^{t}+C_{1}*e^{t}+C_{2}'*t*e^{t}+C_{2}*\left(t+1\right)*e^{t}[/mm]

[mm]\Rightarrow \left(3\right) \ y'\left(t\right)=C_{1}*e^{t}+C_{2}*\left(t+1\right)*e^{t}[/mm]

Mit der selben Bedingung folgt:

[mm]\left(4\right) \ y''\left(t\right)=C_{2}'*e^{t}+C_{1}*e^{t}+C_{2}*\left(t+2\right)*e^{t}[/mm]

(1), (3) und (4) werden jetzt in die DGL eingesetzt,
dann bekommst Du eine Gleichung in [mm]C_{1}', \ C_{2}'[/mm].

Zusammen mit der Bedingung (2) lassen sich hieraus [mm]C_{1}', \ C_{2}'[/mm] bestimmen.

Hieraus folgen dann [mm]C_{1}\left(t\right), \ C_{2}\left(t\right)[/mm]

Und somit die Lösung der DGL 2. Ordnung.


Gruß
MathePower

Bezug
                                
Bezug
Konstantenvariation: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 21:06 Mo 24.11.2008
Autor: marko1612

Kann es sein das bei irgendeiner Gleichung das [mm] C_{1}' [/mm] fehlt?
Wenn ich das einsetze kann ich maximal ein [mm] C_{2}' [/mm] berechnen.

Bezug
                                        
Bezug
Konstantenvariation: Antwort
Status: (Antwort) fertig Status 
Datum: 21:27 Mo 24.11.2008
Autor: MathePower

Hallo marko1612,

> Kann es sein das bei irgendeiner Gleichung das [mm]C_{1}'[/mm]
> fehlt?

Nein, das ist alles richtig.


>  Wenn ich das einsetze kann ich maximal ein [mm]C_{2}'[/mm]
> berechnen.


Um [mm]C_{1}' [/mm] zu berechnen, hast Du ja noch die Zusatzbedingung:

[mm]C_{1}'*e^{t}+C_{2}'*t*e^{t}=0[/mm]


Gruß
MathePower

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Gewöhnliche Differentialgleichungen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorkurse.de
[ Startseite | Mitglieder | Teams | Forum | Wissen | Kurse | Impressum ]