www.vorkurse.de
Ein Projekt von vorhilfe.de
Die Online-Kurse der Vorhilfe

E-Learning leicht gemacht.
Hallo Gast!einloggen | registrieren ]
Startseite · Mitglieder · Teams · Forum · Wissen · Kurse · Impressum
Forenbaum
^ Forenbaum
Status Mathe-Vorkurse
  Status Organisatorisches
  Status Schule
    Status Wiederholung Algebra
    Status Einführung Analysis
    Status Einführung Analytisc
    Status VK 21: Mathematik 6.
    Status VK 37: Kurvendiskussionen
    Status VK Abivorbereitungen
  Status Universität
    Status Lerngruppe LinAlg
    Status VK 13 Analysis I FH
    Status Algebra 2006
    Status VK 22: Algebra 2007
    Status GruMiHH 06
    Status VK 58: Algebra 1
    Status VK 59: Lineare Algebra
    Status VK 60: Analysis
    Status Wahrscheinlichkeitst

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Gewöhnliche Differentialgleichungen" - Konkavität eines AWPs zeigen
Konkavität eines AWPs zeigen < gewöhnliche < Differentialgl. < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Gewöhnliche Differentialgleichungen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Konkavität eines AWPs zeigen: Besprechung des Beweisweges
Status: (Frage) reagiert/warte auf Reaktion Status 
Datum: 10:10 So 26.04.2020
Autor: clemenum

Aufgabe
Betrachte das Cauchy-Problem [mm] $y'=\sin(y),$ y(0)=y_0\in \mathbb{R}.$ [/mm]
Zu zeigen ist: .
(1) eine globale Lösung $y$ existiert in [mm] $\mathbb{R}$ [/mm]
(2) $y$ ist monoton
(3) $y$ ist beschränkt.
(4) $y$ konkav [mm] $\Leftrightarrow y_0= z\pi/2$ [/mm] für [mm] $z\in \mathbb{Z}$ [/mm]
(5) $y$ gerade [mm] \Leftrightarrow $y_0= z\pi/2$ [/mm] für [mm] $z\in \mathbb{Z}$ [/mm]

Zu (1): Sei [mm] $f(y):=\sin(y).$ [/mm] Wegen der Stetigkeit der rechten Seite existiert mindestens eine Lösung der DGL. Da [mm] $y'=\sin(y)$ [/mm] und somit [mm] $|\frac{dy}{dt}$ [/mm] $= [mm] |\sin(y)| \le1 [/mm] $ [mm] $\Rightarrow \sin(y)$ [/mm] ist L-stetig. Wegen dieser L-Stetigkeit ist eine mögliche Lösung der DGL auch eindeutig durch den Anfangswert [mm] $(0,y_0)$ [/mm] bestimmt.

Zu (2):  Es ist $y'=0 [mm] \Leftrightarrow y=k\pi.$ [/mm]
Wir unterscheiden zwei Fälle.
I [mm] $y_0 >k\pi \Rightarrow y>k\pi,$ [/mm] denn sonst würde wegen [mm] $y\equiv k\pi$ [/mm] folgen, dass sich die Lösungen im Punkt [mm] $(0,k\pi)$ [/mm] überkreuzen würden, ein Widerspruch zum Satz von Piccard-Lindelöf. Wegen [mm] $y'=\sin(y)>0$ [/mm] in [mm] $y\in]k\pi, (k+1)\pi[$ [/mm] ist $y$ dort streng monoton wachsend.

II Sei [mm] $y_0
Kombiniert man I und II, so folgt, dass y entweder monoton wachsend oder monoton fallend ist oder konstant ist. In allen Fällen ist $y$ monoton.

Zu (3) . Folgt im Wesentlichen aus (2), denn dort sind ja die oberen und unteren Grenzen für $y$ angegeben.

Zu (4). Hier wird es jetzt eigenartig. Zu zeigen ist, dass [mm] $y''\le [/mm] 0$ ist. Meine Strategie ist, dass ich indirekt vorgehe. Ich starte bei [mm] $y_0\neq z\pi/2$ [/mm] und zeige dann, dass y''>0 ist.
Also sei [mm] $y_0\neq z\pi/2.$ [/mm]
Wir unterscheiden wieder zwei Fälle.
I [mm] $y_0>z\pi/2.\Rightarrow$ $y\in ]z\pi/2,(z+2)\pi/2[.$ [/mm] Und nun kommt das Problem; abhängig von der Parität von $z$, ist der Sinus in dem Intervall entweder positiv oder negativ. Deswegen scheint es nicht möglich zu sein, zu zeigen, dass [mm] $y''=\frac{\sin(2y)}{2}>0$ [/mm] ist.


Kann mir jemand weiterhelfen in der Frage wie man im Punkt (4) die Konkavität zeigen kann? Es ist wirklich eigenartig.

Wäre für Hilfe dankbar.

        
Bezug
Konkavität eines AWPs zeigen: Antwort
Status: (Antwort) fertig Status 
Datum: 17:11 So 26.04.2020
Autor: statler

Hallo!

> Zu (4). Hier wird es jetzt eigenartig. Zu zeigen ist, dass
> [mm]y''\le 0[/mm] ist.

Das ist nicht zu zeigen, die Behauptung ist eine 'genau-dann-wenn-Aussage'. Und deswegen kommst du unten auch nicht zum Ziel. Hast du eine Vorstellung, wie die Lösungen verlaufen, hast du mal ein Richtungsfeld gezeichnet?

Die eine Richtung ist doch klar, die konstanten Lösungen sind konkav. Also mußt du noch etwas zeigen wie: Wenn y'' [mm] \le [/mm] 0 in [mm] \IR [/mm] , dann y'' = 0, also y' konstant usw.

> Meine Strategie ist, dass ich indirekt
> vorgehe. Ich starte bei [mm]y_0\neq z\pi/2[/mm] und zeige dann, dass
> y''>0 ist.
> Also sei [mm]y_0\neq z\pi/2.[/mm]
> Wir unterscheiden wieder zwei Fälle.
> I [mm]y_0>z\pi/2.\Rightarrow[/mm] [mm]y\in ]z\pi/2,(z+2)\pi/2[.[/mm] Und nun
> kommt das Problem; abhängig von der Parität von [mm]z[/mm], ist
> der Sinus in dem Intervall entweder positiv oder negativ.
> Deswegen scheint es nicht möglich zu sein, zu zeigen, dass
> [mm]y''=\frac{\sin(2y)}{2}>0[/mm] ist.
>
>
> Kann mir jemand weiterhelfen in der Frage wie man im Punkt
> (4) die Konkavität zeigen kann? Es ist wirklich
> eigenartig.

(5) ist wohl so ähnlich.

Gruß Dieter


Bezug
                
Bezug
Konkavität eines AWPs zeigen: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 20:12 So 26.04.2020
Autor: clemenum

"Das ist nicht zu zeigen, die Behauptung ist eine 'genau-dann-wenn-Aussage'"

Ich möchte dein Gegenargument zu meiner Vorgehensweise verstehen.

Du behauptest also, dass [mm] $A\Leftrightarrow [/mm] B$ nicht durch [mm] $(\neg [/mm] B [mm] \Rightarrow \neg [/mm] A) [mm] \wedge (\neg [/mm] A [mm] \Rightarrow \neg [/mm] B)$ gezeigt werden kann?

Ich hatte den Beweis durch Kontraposition auf das Problem angewandt und habe mir gedacht, dass die Richtung von links nach rechts, dadurch gezeigt werden kann, indem man zeigt, dass aus NICHT Rechts folgt, dass NICHT Links gilt. Wieso sollte diese Vorgangsweise denn bei einer Dann-und nur dann Aussage nicht zu verwenden sein? Logisch sind sie doch äquivalent.

Bezug
                        
Bezug
Konkavität eines AWPs zeigen: Antwort
Status: (Antwort) fertig Status 
Datum: 06:26 Mo 27.04.2020
Autor: statler


> "Das ist nicht zu zeigen, die Behauptung ist eine
> 'genau-dann-wenn-Aussage'"
>  
> Ich möchte dein Gegenargument zu meiner Vorgehensweise
> verstehen.
>  
> Du behauptest also, dass [mm]A\Leftrightarrow B[/mm] nicht durch
> [mm](\neg B \Rightarrow \neg A) \wedge (\neg A \Rightarrow \neg B)[/mm]
> gezeigt werden kann?
>
> Ich hatte den Beweis durch Kontraposition auf das Problem
> angewandt und habe mir gedacht, dass die Richtung von links
> nach rechts, dadurch gezeigt werden kann, indem man zeigt,
> dass aus NICHT Rechts folgt, dass NICHT Links gilt. Wieso
> sollte diese Vorgangsweise denn bei einer Dann-und nur dann
> Aussage nicht zu verwenden sein? Logisch sind sie doch
> äquivalent.

Das ist alles richtig, aber so hattest du es nicht hingeschrieben, egal. Wenn du es so anpacken willst, ist die zu zeigende Implikation:
y [mm] \not= k\pi \Rightarrow \neg(y'' \le [/mm] 0)
und
[mm] \neg(y'' \le [/mm] 0) [mm] \gdw \exists x_0 [/mm] : [mm] y''(x_0) [/mm] > 0
[mm] \exists x_0 [/mm] : [mm] y''(x_0) [/mm] > 0 ist eine andere Aussage als y'' > 0, jedenfalls in meiner pedantischen Auffassung.





Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Gewöhnliche Differentialgleichungen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorkurse.de
[ Startseite | Mitglieder | Teams | Forum | Wissen | Kurse | Impressum ]