www.vorkurse.de
Ein Projekt von vorhilfe.de
Die Online-Kurse der Vorhilfe

E-Learning leicht gemacht.
Hallo Gast!einloggen | registrieren ]
Startseite · Mitglieder · Teams · Forum · Wissen · Kurse · Impressum
Forenbaum
^ Forenbaum
Status Mathe-Vorkurse
  Status Organisatorisches
  Status Schule
    Status Wiederholung Algebra
    Status Einführung Analysis
    Status Einführung Analytisc
    Status VK 21: Mathematik 6.
    Status VK 37: Kurvendiskussionen
    Status VK Abivorbereitungen
  Status Universität
    Status Lerngruppe LinAlg
    Status VK 13 Analysis I FH
    Status Algebra 2006
    Status VK 22: Algebra 2007
    Status GruMiHH 06
    Status VK 58: Algebra 1
    Status VK 59: Lineare Algebra
    Status VK 60: Analysis
    Status Wahrscheinlichkeitst

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Zahlentheorie" - Kongruenzen
Kongruenzen < Zahlentheorie < Algebra+Zahlentheo. < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Zahlentheorie"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Kongruenzen: Tipps
Status: (Frage) beantwortet Status 
Datum: 16:50 Di 18.12.2012
Autor: heinze

Aufgabe
Bestimme alle x in [mm] \IZ, [/mm] für die sowohl [mm] x\equiv [/mm] 1 (mod 3) als auch [mm] x\equiv [/mm] (mod 5) gilt.

Idee: Überlege welchen rest x bei Division durch 3 bzw. 5 lässt. veranschauliche die gesuchte menge durch eine zahlengerade und markiere dort die Lösung der ersten und zweiten Kongruenz.

für [mm] x\equiv [/mm] 1 (mod 3) gilt für:

x=4,7,10,13,16,19,...

füt x\ 4(mod 5) gilt für:

x=9,14,19,24,....

Die 19 ist z.B. gemeinsam.

Wie soll ich das hier machen? Ich komme hier nicht recht weiter..

LG
heinze

        
Bezug
Kongruenzen: Antwort
Status: (Antwort) fertig Status 
Datum: 17:12 Di 18.12.2012
Autor: Teufel

Hi!

Bei der 2. Gleichung hast du z.B. noch die 4 als Lösung der 2. Gleichung. Damit sind 4 und 19 schon mal Lösungen der beiden Gleichungen. Wenn du noch ein wenig weiter machst, erhältst du z.B. auch -11, -26, -41, ... und 34, 49, 64, ... als Lösungen.

Welche Form haben diese Lösungen? Kannst du sie als Menge angeben? Und dann auch zeigen, dass diese Lösungen die einzigen sind?

Bezug
                
Bezug
Kongruenzen: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 17:39 Di 18.12.2012
Autor: heinze

Ich bin beim Rechnen mit Kongruenzen noch nicht so richtig durchgestiegen..also können auch negative Zahlen gelten?

-11 z.B. ist klar für (mod 3)

Aber ich erkenne keine Form der Lösungen, nur ds sie positiv und negativ sein können. Der Abstand zwischen diesen Ergebnissen ist immer 15, vielleicht weil 15 das kgV ist?

Aber so richtig helfen tut mir das noch nicht beim Angeben der Lösung.

Ich weiß auch nicht wie weit ich die positiven und negativen Lösungen laufen lassen soll, ich nehme mal an bis unendlich? Man addiert ja immer das kgV...


LG
heinze


Bezug
                        
Bezug
Kongruenzen: Antwort
Status: (Antwort) fertig Status 
Datum: 17:46 Di 18.12.2012
Autor: Teufel

Ja, also negative Zahlen zählen auch, außer es wurde irgendwo anders angegeben.
Und ja, der Abstand ist immer 15. Wenn du diese Menge, also ..., -26, -11, 4, 19, 34, ... schön aufschreiben willst, kannst du das mit [mm] 4+15\IZ [/mm] machen. Denn [mm] 15\IZ=\{..., -15, 0, 15, 30, 45, ...\} [/mm] und dann musst du zu jedem Element einfach noch 4 addieren.

Die Elemente aus dieser Menge haben dann die Form $4+15k$, für ein [mm] $k\in \IZ$. [/mm] Jetzt musst du zeigen: So ein $4+15k$ löst deine beiden Gleichungen.  Die Umkehrung musst du allerdings auch noch zeigen.

Bezug
                                
Bezug
Kongruenzen: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 17:52 Di 18.12.2012
Autor: heinze

Vielen Dank,für die gute Erklärung, das hat mir sehr gut weitergeholfen!!!!:)

LG
heinze

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Zahlentheorie"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorkurse.de
[ Startseite | Mitglieder | Teams | Forum | Wissen | Kurse | Impressum ]