www.vorkurse.de
Ein Projekt von vorhilfe.de
Die Online-Kurse der Vorhilfe

E-Learning leicht gemacht.
Hallo Gast!einloggen | registrieren ]
Startseite · Mitglieder · Teams · Forum · Wissen · Kurse · Impressum
Forenbaum
^ Forenbaum
Status Mathe-Vorkurse
  Status Organisatorisches
  Status Schule
    Status Wiederholung Algebra
    Status Einführung Analysis
    Status Einführung Analytisc
    Status VK 21: Mathematik 6.
    Status VK 37: Kurvendiskussionen
    Status VK Abivorbereitungen
  Status Universität
    Status Lerngruppe LinAlg
    Status VK 13 Analysis I FH
    Status Algebra 2006
    Status VK 22: Algebra 2007
    Status GruMiHH 06
    Status VK 58: Algebra 1
    Status VK 59: Lineare Algebra
    Status VK 60: Analysis
    Status Wahrscheinlichkeitst

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "mathematische Statistik" - Konfidenzintervall
Konfidenzintervall < math. Statistik < Stochastik < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "mathematische Statistik"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Konfidenzintervall: Bestimmung, Verteilung
Status: (Frage) beantwortet Status 
Datum: 12:25 Sa 14.02.2009
Autor: Marcel08

Hallo Matheraum,


gegeben sei das folgende Konfindenzintervall



[mm] (1-\alpha)- [/mm] Konfidenzintervalle für µ bei normalverteiltem Merkmal


Wenn [mm] \sigma^{2} [/mm] bekannt ist, erhält man


[mm] [\overline{X}-z_{1-\bruch{\alpha}{2}}\bruch{\sigma}{\wurzel{n}},\overline{X}+z_{1-\bruch{\alpha}{2}}\bruch{\sigma}{\wurzel{n}}] [/mm]



Meine Frage:


In welcher Verteilung muss ich nun das Quantil [mm] z_{1-\bruch{\alpha}{2}} [/mm] heraussuchen? Anders gefragt: Zu welcher Verteilung gehört z generell?



Über eine baldige Hilfe würde ich mich sehr freuen.





Gruß, Marcel

        
Bezug
Konfidenzintervall: Antwort
Status: (Antwort) fertig Status 
Datum: 12:41 Sa 14.02.2009
Autor: oLman

Wie ist die Normalverteilung denn gegeben?

Es fehlt eine wichtige Angabe, also Standardnormalverteilung oder eine andere...


Da ich die Aufgabe kenne ist es wohl eine N(2,4) Verteilung..

Mein Tipp:

[mm] N(\mu,o) [/mm] = [mm] \wurzel{o} [/mm] * z + [mm] \mu[/mm]  

Bezug
                
Bezug
Konfidenzintervall: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 12:49 Sa 14.02.2009
Autor: Marcel08

Aufgabe (G16) c):


Gegeben ist unter anderem [mm] N(m,\sigma^{2}). [/mm] In Aufgabenteil c) ist zudem [mm] \sigma^{2}=6.13^{2} [/mm] gegeben. Da aber [mm] N(m,6.13^{2})\not=N(0,1) [/mm] ist, handelt es sich hier ja nicht um eine Standardnormalverteilung.


Trotzdem wird in der Musterlösung der Weg mit [mm] t_{n,p}\approx u_{p} [/mm] über die Standardnormalverteilung angegeben.



Warum?


Wenn t bedeutet, dass man in der t-Verteilung suchen muss, in welcher Verteilung muss ich dann für q oder z suchen?



Bezug
                        
Bezug
Konfidenzintervall: Antwort
Status: (Antwort) fertig Status 
Datum: 12:58 Sa 14.02.2009
Autor: oLman

Die Verteilung kannst du in der

Quantile up der N(0,1)–Verteilung ablesen..

Also p = 0.975 -> 1.960

Die genaue Umformung weiss ich allerdings auch nicht, habs mir nur so auf meinen Zettel für die Klausur geschrieben, dass ich es dort ablesen..

PS: Geb mir am besten mal deine ICQ Nr., dann kannst du mich auch direkt fragen ^^

Am besten per PN, kann dir leider noch keine senden weil ich noch den Status "Newbie" habe

Bezug
                                
Bezug
Konfidenzintervall: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 13:02 Sa 14.02.2009
Autor: Marcel08

Alles klar. :-) Abgeschickt.

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "mathematische Statistik"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorkurse.de
[ Startseite | Mitglieder | Teams | Forum | Wissen | Kurse | Impressum ]