www.vorkurse.de
Ein Projekt von vorhilfe.de
Die Online-Kurse der Vorhilfe

E-Learning leicht gemacht.
Hallo Gast!einloggen | registrieren ]
Startseite · Mitglieder · Teams · Forum · Wissen · Kurse · Impressum
Forenbaum
^ Forenbaum
Status Mathe-Vorkurse
  Status Organisatorisches
  Status Schule
    Status Wiederholung Algebra
    Status Einführung Analysis
    Status Einführung Analytisc
    Status VK 21: Mathematik 6.
    Status VK 37: Kurvendiskussionen
    Status VK Abivorbereitungen
  Status Universität
    Status Lerngruppe LinAlg
    Status VK 13 Analysis I FH
    Status Algebra 2006
    Status VK 22: Algebra 2007
    Status GruMiHH 06
    Status VK 58: Algebra 1
    Status VK 59: Lineare Algebra
    Status VK 60: Analysis
    Status Wahrscheinlichkeitst

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Uni-Stochastik" - Konfidenzintervall
Konfidenzintervall < Stochastik < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Stochastik"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Konfidenzintervall: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 10:26 Do 11.01.2007
Autor: stevarino

Aufgabe
Die Durchmesser dr von einer Maschine gerfertigten Stahlkugeln für Kugelllager seien normalverteilt. Bei einer Stichprobe vom Umfang n=30 erhält man einen mittleren Durchmesser x=10,2mm und eine Standardabweichung s=0,62mm. Geben Sie Konfidenzintervall für den Erwartungwert [mm] \mu [/mm] nd die Varianz [mm] \sigma^{2} [/mm] zu der Konfidenzzahl [mm] \alpha=0,05 [/mm] an

Hallo

Könnte das jemand checken und ggf. ausbesser?

Ich hab das so probiert

[mm] P(x_{n}\le [/mm] X [mm] \le x_{0}) [/mm]

mit [mm] Z=\bruch{X-\mu}{\bruch{\sigma}{\wurzel{n}}} [/mm]

[mm] P(-z(1-\bruch{\alpha}{2})\le\bruch{X-\mu}{\bruch{\sigma}{\wurzel{n}}}\le z(1-\bruch{\alpha}{2})=1-\alpha [/mm]

umformen nach [mm] \mu [/mm]

[mm] P(X-z(1-\bruch{\alpha}{2})*\bruch{\sigma}{\wurzel{n}}\le\mu\le X+z(1-\bruch{\alpha}{2})*\bruch{\sigma}{\wurzel{n}}) [/mm]

und für [mm] \sigma^{2} [/mm] das selbe

[mm] P(\bruch{n*(X-\mu)^{2}}{z^{2}*(1-\bruch{\alpha}{2})^{2}}\le\sigma^{2}\le\bruch{n*(X-\mu)^{2}}{z^{2}*(1-\bruch{\alpha}{2})^{2}}) [/mm]

aber was mach ich jetzt mit der Standardabweichung s kann ich die statt [mm] \sigma [/mm] einsetzen???

lg Stevo

        
Bezug
Konfidenzintervall: Antwort
Status: (Antwort) fertig Status 
Datum: 12:17 Do 11.01.2007
Autor: luis52


> Die Durchmesser dr von einer Maschine gerfertigten
> Stahlkugeln für Kugelllager seien normalverteilt. Bei einer
> Stichprobe vom Umfang n=30 erhält man einen mittleren
> Durchmesser x=10,2mm und eine Standardabweichung s=0,62mm.
> Geben Sie Konfidenzintervall für den Erwartungwert [mm]\mu[/mm] nd
> die Varianz [mm]\sigma^{2}[/mm] zu der Konfidenzzahl [mm]\alpha=0,05[/mm] an
>  Hallo
>  
> Könnte das jemand checken und ggf. ausbesser?
>  
> Ich hab das so probiert
>  
> [mm]P(x_{n}\le[/mm] X [mm]\le x_{0})[/mm]
>  
> mit [mm]Z=\bruch{X-\mu}{\bruch{\sigma}{\wurzel{n}}}[/mm]
>  
> [mm]P(-z(1-\bruch{\alpha}{2})\le\bruch{X-\mu}{\bruch{\sigma}{\wurzel{n}}}\le z(1-\bruch{\alpha}{2})=1-\alpha[/mm]
>  
> umformen nach [mm]\mu[/mm]
>  
> [mm]P(X-z(1-\bruch{\alpha}{2})*\bruch{\sigma}{\wurzel{n}}\le\mu\le X+z(1-\bruch{\alpha}{2})*\bruch{\sigma}{\wurzel{n}})[/mm]

[ok], wenn du [mm] $X=\bar [/mm] X$ setzt.


>  
> und für [mm]\sigma^{2}[/mm] das selbe
>  
> [mm]P(\bruch{n*(X-\mu)^{2}}{z^{2}*(1-\bruch{\alpha}{2})^{2}}\le\sigma^{2}\le\bruch{n*(X-\mu)^{2}}{z^{2}*(1-\bruch{\alpha}{2})^{2}})[/mm]
>  

[notok]

> aber was mach ich jetzt mit der Standardabweichung s kann
> ich die statt [mm]\sigma[/mm] einsetzen???
>  

Stevo, schau mal bitte hier:

http://de.wikipedia.org/wiki/Konfidenzintervall

hth


Bezug
                
Bezug
Konfidenzintervall: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 13:24 Do 11.01.2007
Autor: stevarino

Hallo

Hab ich schon gemacht...

wenn ich das mit der [mm] X^{2} [/mm] Verteilung berechne
[mm] X^{2}(1-\bruch{\alpha}{2};n-1)=16,047 [/mm]
[mm] X^{2}(\bruch{\alpha}{2};n-1)=45,722 [/mm]

hab ich als Intervall [mm] [694,684*10^{-3}\ge \sigma^{2} \ge 243,813*10^{-3}] [/mm]

hab ich das so richtig verstanden??

Danke

lg Stevo

Bezug
                        
Bezug
Konfidenzintervall: Antwort
Status: (Antwort) fertig Status 
Datum: 13:51 Do 11.01.2007
Autor: luis52

Kann ich nicht nachvollziehen. *Ich*  erhalte


[mm] \begin{matrix} \mbox{KI}_{0.95}(\sigma^2)&=&\left[\dfrac{29\times0.3844}{\chi_{0.9750}^2(29)},\dfrac{29\times0.3844}{\chi_{0.0250}^2(29)}\right]\\ &=&\left[\dfrac{11.1476}{45.7223},\dfrac{11.1476}{16.0471}\right]\\ &=&[0.2438,0.6947] \end{matrix} [/mm]


hth

Bezug
                                
Bezug
Konfidenzintervall: Frage (überfällig)
Status: (Frage) überfällig Status 
Datum: 14:11 Do 11.01.2007
Autor: stevarino

Hallo

Dir kommt ja genau das gleiche heraus??? also muss meins ja auch stimmen oder??

lg stevo

Bezug
                                        
Bezug
Konfidenzintervall: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 14:31 Do 11.01.2007
Autor: luis52

Huch, ach ja. Wie peinlich. Wer lesen kann, ist im Vorteil. ;-)

Bezug
                                        
Bezug
Konfidenzintervall: Fälligkeit abgelaufen
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 14:20 Sa 13.01.2007
Autor: matux

$MATUXTEXT(ueberfaellige_frage)
Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Stochastik"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorkurse.de
[ Startseite | Mitglieder | Teams | Forum | Wissen | Kurse | Impressum ]