www.vorkurse.de
Ein Projekt von vorhilfe.de
Die Online-Kurse der Vorhilfe

E-Learning leicht gemacht.
Hallo Gast!einloggen | registrieren ]
Startseite · Mitglieder · Teams · Forum · Wissen · Kurse · Impressum
Forenbaum
^ Forenbaum
Status Mathe-Vorkurse
  Status Organisatorisches
  Status Schule
    Status Wiederholung Algebra
    Status Einführung Analysis
    Status Einführung Analytisc
    Status VK 21: Mathematik 6.
    Status VK 37: Kurvendiskussionen
    Status VK Abivorbereitungen
  Status Universität
    Status Lerngruppe LinAlg
    Status VK 13 Analysis I FH
    Status Algebra 2006
    Status VK 22: Algebra 2007
    Status GruMiHH 06
    Status VK 58: Algebra 1
    Status VK 59: Lineare Algebra
    Status VK 60: Analysis
    Status Wahrscheinlichkeitst

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Numerik linearer Gleichungssysteme" - Kondition einer Matrix
Kondition einer Matrix < Lin. Gleich.-systeme < Numerik < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Numerik linearer Gleichungssysteme"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Kondition einer Matrix: Frage (überfällig)
Status: (Frage) überfällig Status 
Datum: 00:20 Mi 10.12.2008
Autor: Susan86

Aufgabe
Es sei A = 1/h tridiag(1,4,1) die Matrix, die bei der  Spline Interpolation zu äquidistanten Stützstllen auftrat. Zeigen sie , dass cond [mm] \infty [/mm] (A) [mm] \le [/mm] 3 unabhängig von der Dimension der Matrix A gilt.

Hallo erstmal, also ich hab da schon wieder ein Problem. Als HInweis zu dieser Aufgabe habe ich bekommen, dass , da cond(A) unabhängig von h ist, können wir oBdA annehmen, dass h = 1. Dann zerlegen wir A = 4(I + N) und betrachten die Neumnsche Reihe (I+N)^(-1) = [mm] \summe_{j=1}^{\infty} (-N)^j [/mm] , um [mm] \parallel [/mm] A^(-1) [mm] \parallel \infty [/mm] abzuschätzen.

ich hab jetzt einfah mal die Matrix zelegt und bekomme:

4*( [mm] \pmat{ 1 & 0 & 0 & . & 0 \\ 0 & 1 & 0 & . & 0 \\ . & . & . & . & . \\ . & . & . & . & . \\ . & . & . & . & 0 } [/mm] * [mm] \pmat{ 0 & 1/4 & 0 & . & 0 \\ 1/4 & 0 & 1/4 & . & 0 \\ . & . & . & . & . \\ . & . & . & . & . \\ . & . & . & 1/4 & 0 } [/mm] )
Ist diese Zelegung überhaupt richtig, bin mir nicht sicher ob das damit gemeint ist. Und naja dann soll ich ja mit dieser Neumannschen Reihe weitermachen um zu zeigen, dass die Konditionszahl unabhängig von n ist und hier bin ich völig überfragt, wäre echt lieb wenn mir jemand einen Tip geben könnte wie ich hier weitermache.
Liebe Grüße

        
Bezug
Kondition einer Matrix: Fälligkeit abgelaufen
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 00:20 Mo 15.12.2008
Autor: matux

$MATUXTEXT(ueberfaellige_frage)
Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Numerik linearer Gleichungssysteme"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorkurse.de
[ Startseite | Mitglieder | Teams | Forum | Wissen | Kurse | Impressum ]