Komposition von Relationen < Relationen < Diskrete Mathematik < Hochschule < Mathe < Vorhilfe
|
Status: |
(Frage) beantwortet | Datum: | 10:07 Mo 03.11.2008 | Autor: | usui |
Hallo,
leider ist der Platz für das Topic so klein bemessen. Es geht um die Nicht-kommutativität der Komposition von binären Relationen. Ich habe Probleme meine Idee mathematisch-griffig zu fassen.
Bei R := <x,y> und S := <y,z>
R [mm] \circ [/mm] S [mm] \{|\exists y ( \in R \wedge \in S)\}
[/mm]
R [mm] \circ [/mm] S [mm] \not= [/mm] S [mm] \circ [/mm] R, weil es sich um geordnete Tupel handelt und da fehlt dem armen kleinen y eine Andockstation, nur weil es auf der falschen Seite steht oder? ^^
Mein Beispiel ist:
x ist die Schwester von y und y ist der Sohn von z, dann ist x die Tochter von z, umgekehrt geht das aber nicht wegen der Ordnung.
Ihr merkt schon, sehr mathematisch ausgedrückt... Wie könnte ich das formalisieren? Schonmal vielen Dank für die Hilfe!
P.S. Wenn nun aber R = S, dann sind die beiden doch kommutativ?
P.P.S. Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.
|
|
|
|
Status: |
(Antwort) fertig | Datum: | 11:41 Mo 03.11.2008 | Autor: | statler |
Hallo und
> leider ist der Platz für das Topic so klein bemessen. Es
> geht um die Nicht-kommutativität der Komposition von
> binären Relationen. Ich habe Probleme meine Idee
> mathematisch-griffig zu fassen.
>
> Sei R := <x,y> und S := <y,z>
Besser: Sei R := {(x,y)} und S := {(y,z)}
Die beiden Relationen sind also 1elementig.
> R [mm]\circ[/mm] S [mm]\{|\exists y ( \in R \wedge \in S)\}[/mm]
>
> R [mm]\circ[/mm] S [mm]\not=[/mm] S [mm]\circ[/mm] R, weil es sich um geordnete Tupel
> handelt und da fehlt dem armen kleinen y eine
> Andockstation, nur weil es auf der falschen Seite steht
> oder? ^^
R [mm] \circ [/mm] S ist dann auch 1-elementig, und S [mm] \circ [/mm] R ist leer, weil die beiden geordneten Paare mittig nicht zusammenpassen.
> P.S. Wenn nun aber R = S, dann sind die beiden doch
> kommutativ?
Dann steht da doch R [mm] \circ [/mm] R, wenn ich das vordere R mit dem hinteren vertausche, steht da immer noch R [mm] \circ [/mm] R.
Gruß aus Harburg
Dieter
|
|
|
|