www.vorkurse.de
Ein Projekt von vorhilfe.de
Die Online-Kurse der Vorhilfe

E-Learning leicht gemacht.
Hallo Gast!einloggen | registrieren ]
Startseite · Mitglieder · Teams · Forum · Wissen · Kurse · Impressum
Forenbaum
^ Forenbaum
Status Mathe-Vorkurse
  Status Organisatorisches
  Status Schule
    Status Wiederholung Algebra
    Status Einführung Analysis
    Status Einführung Analytisc
    Status VK 21: Mathematik 6.
    Status VK 37: Kurvendiskussionen
    Status VK Abivorbereitungen
  Status Universität
    Status Lerngruppe LinAlg
    Status VK 13 Analysis I FH
    Status Algebra 2006
    Status VK 22: Algebra 2007
    Status GruMiHH 06
    Status VK 58: Algebra 1
    Status VK 59: Lineare Algebra
    Status VK 60: Analysis
    Status Wahrscheinlichkeitst

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Lineare Algebra - Moduln und Vektorräume" - Komposition Endomorphismus
Komposition Endomorphismus < Moduln/Vektorraum < Lineare Algebra < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Algebra - Moduln und Vektorräume"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Komposition Endomorphismus: Tipp
Status: (Frage) beantwortet Status 
Datum: 10:38 Sa 25.04.2015
Autor: Ne0the0ne

Aufgabe
Sei V ein K-Vektorraum und f:V [mm] \to [/mm] V ein Endomorphismus von V mit
f [mm] \circ [/mm] f = f.

Zeigen Sie, dass dann V=ker(f) [mm] \oplus [/mm] im(f) gilt.

Hallo,
ich versuche mich gerade an der Aufgabe und habe auch schon ein wenig recherchiert; leider kam nichts brauchbares dabei raus.

Für Endomorphismus habe ich folgende Definition:
"Ein Endomorphismus ist ein Homomorphismus f:A→A einer mathematischen Struktur A in sich selbst."

Jetzt stehe ich erstmal vor dem Problem, überhaupt zu verstehen, was f [mm] \circ [/mm] f = f meint.

Hat da jemand einen Ratschlag für mich?

        
Bezug
Komposition Endomorphismus: Frage (reagiert)
Status: (Frage) reagiert/warte auf Reaktion Status 
Datum: 10:51 Sa 25.04.2015
Autor: Ne0the0ne

Ich habe einen Fortschritt erzielt:

f [mm] \circ [/mm] f = f ist idempotent, also [mm] \forall v\in [/mm] V ergibt eine zweimalige Anwendung von f den gleichen Wert wie die einmalige Anwendung, also f(f(x)) = f(x)

Ich würde jetzt gerne an einem konkreten Vektorraum darstellen und würde dafür den R³ vorschlagen.

Bezug
        
Bezug
Komposition Endomorphismus: Antwort
Status: (Antwort) fertig Status 
Datum: 10:52 Sa 25.04.2015
Autor: fred97


> Sei V ein K-Vektorraum und f:V [mm]\to[/mm] V ein Endomorphismus von
> V mit
>  f [mm]\circ[/mm] f = f.
>  
> Zeigen Sie, dass dann V=ker(f) [mm]\oplus[/mm] im(f) gilt.
>  Hallo,
>  ich versuche mich gerade an der Aufgabe und habe auch
> schon ein wenig recherchiert; leider kam nichts brauchbares
> dabei raus.
>  
> Für Endomorphismus habe ich folgende Definition:
> "Ein Endomorphismus ist ein Homomorphismus f:A→A einer
> mathematischen Struktur A in sich selbst."

Die math. Struktur A ist hier der Vektorraum V und f ist eine lineare Abbildung.


>  
> Jetzt stehe ich erstmal vor dem Problem, überhaupt zu
> verstehen, was f [mm]\circ[/mm] f = f meint.

Das bedeutet: f(f(x))=f(x) für alle x in V.


>  
> Hat da jemand einen Ratschlag für mich?


Für x [mm] \in [/mm] V gilt x=f(x)+(x-f(x)).  Klar: f(x) [mm] \in [/mm] Im(f). Zeige: x-f(x) [mm] \in [/mm] ker(f).

Dann hast Du: V= Im(f)+ker(f).

Jetzt ist nur noch zu zeigen:  Im(f) [mm] \cap [/mm] ker(f)= [mm] \{0\} [/mm]

FRED


Bezug
                
Bezug
Komposition Endomorphismus: Idee
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 10:56 Sa 25.04.2015
Autor: Ne0the0ne

So langsam verstehe ich es.
Ich probiere mich mal am Beweis.
Danke fred97. :-)

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Algebra - Moduln und Vektorräume"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorkurse.de
[ Startseite | Mitglieder | Teams | Forum | Wissen | Kurse | Impressum ]