www.vorkurse.de
Ein Projekt von vorhilfe.de
Die Online-Kurse der Vorhilfe

E-Learning leicht gemacht.
Hallo Gast!einloggen | registrieren ]
Startseite · Mitglieder · Teams · Forum · Wissen · Kurse · Impressum
Forenbaum
^ Forenbaum
Status Mathe-Vorkurse
  Status Organisatorisches
  Status Schule
    Status Wiederholung Algebra
    Status Einführung Analysis
    Status Einführung Analytisc
    Status VK 21: Mathematik 6.
    Status VK 37: Kurvendiskussionen
    Status VK Abivorbereitungen
  Status Universität
    Status Lerngruppe LinAlg
    Status VK 13 Analysis I FH
    Status Algebra 2006
    Status VK 22: Algebra 2007
    Status GruMiHH 06
    Status VK 58: Algebra 1
    Status VK 59: Lineare Algebra
    Status VK 60: Analysis
    Status Wahrscheinlichkeitst

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Funktionen" - Komposition
Komposition < Funktionen < eindimensional < reell < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Funktionen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Komposition: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 19:29 Di 04.06.2013
Autor: Hero991

Aufgabe
Gegeben seien die folgenden Funktionen: f; g; h : [mm] \IR \to \IR [/mm] mit f(x) = [mm] -(x^2), [/mm] g(x) = exp(x), h(x) = |x|
sowie l : [mm] \IR\{0} [/mm] mit l(x) = [mm] \bruch{1}{x} [/mm]

a.) Betrachten Sie die Funktionen
H(x) = (l [mm] \circ [/mm] h [mm] \circ [/mm] g [mm] \circ [/mm] f)(x)
Vereinfachen Sie die Funktionsgleichungen soweit wie möglich. Was ist jeweils der größtmögliche Definitionsbereich?

b.)  Drücken Sie F : [mm] \IR \to \IR [/mm] mit F(x) = -exp(-2x) als Komposition der obigen Funktionen aus.

Hallo,
bei der a.) hab ich folgendes für H(x):
H(x) = (l [mm] \circ [/mm] h [mm] \circ [/mm] g [mm] \circ [/mm] f)(x)  [mm] \gdw [/mm] l(h(g(f(x))))  [mm] \gdw l(h(g(-(x^2)))) \gdw l(h(exp(-(x^2)))) \gdw l(|(exp(-(x^2)|))) \gdw l(|(exp(x^2)|)) \gdw \bruch{1}{(exp(x^2)} [/mm]

Bei b.) dachte ich an Folgendes:
F(x)=f(g(l(hx)))) [mm] \gdw [/mm] ... [mm] \gdw -(exp(\bruch{1}{x}))^2 [/mm] aber das ist falsch, da [mm] -(exp(\bruch{1}{x}))^2 \not= [/mm] -(exp(-2x)) ist. Leider weiß ich nicht, wie ich auf -(exp(-2x)) kommen könnte. Ich hoffe ihr könnt mir weiter Helfen.

Beste Grüße


        
Bezug
Komposition: Antwort
Status: (Antwort) fertig Status 
Datum: 19:58 Di 04.06.2013
Autor: leduart

Hallo
hilft dir [mm] :e^{-2x}=(e^{-x})^2 [/mm]
Gruss leduart

Bezug
                
Bezug
Komposition: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 20:27 Di 04.06.2013
Autor: Hero991

Hmm ich Frage mich wie ich durch die Komp. [mm] (e^{-x})^2 [/mm] darstellen kann.

Mit meiner Idee, die ich oben(1. Post) gepostet habe, kam ich auf [mm] -(e^{x})^2 [/mm] aber wie soll ich auf [mm] -(e^{-x})^2 [/mm] kommen?

Bezug
                        
Bezug
Komposition: Antwort
Status: (Antwort) fertig Status 
Datum: 20:44 Di 04.06.2013
Autor: Fulla

Hallo Hero991!

zu a)

> bei der a.) hab ich folgendes für H(x):
> H(x) = (l [mm] \circ [/mm] h [mm] \circ [/mm] g [mm] \circ [/mm] f)(x)   [mm] \gdw [/mm] l(h(g(f(x))))   [mm] \gdw l(h(g(-(x^2)))) \gdw l(h(exp(-(x^2)))) \gdw l(|(exp(-(x^2)|))) \gdw l(|(exp(x^2)|)) \gdw \bruch{1}{(exp(x^2)} [/mm]

Das stimmt nicht. [mm]|\exp(-x^2)|\neq|\exp(x^2)|[/mm]

zu b)

> Hmm ich Frage mich wie ich durch die Komp. [mm](e^{-x})^2[/mm]
> darstellen kann.

>

> Mit meiner Idee, die ich oben(1. Post) gepostet habe, kam
> ich auf [mm]-(e^{x})^2[/mm] aber wie soll ich auf [mm]-(e^{-x})^2[/mm]
> kommen?

Woher kommt denn [mm]-\left(e^{-x}\right)^2[/mm]? Das ist genauso wenig richtig wie [mm]-\left(e^x\right)^2[/mm].
Schreib das doch nochmal Schritt für Schritt auf.

Lieben Gruß,
Fulla

Bezug
                                
Bezug
Komposition: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 21:06 Di 04.06.2013
Autor: Hero991

Hallo,
also ich hab folgendes als Idee gehabt:
f(g(l(h(x)))) [mm] \gdw [/mm] f(g(l(|x|))) [mm] \gdw [/mm]  f(g(l(x))) [mm] \gdw f(g(\bruch{1}{x})) \gdw f(e^{\bruch{1}{x}}) \gdw -((e^{\bruch{1}{x}})^{2}) [/mm]

Bezug
                                        
Bezug
Komposition: Antwort
Status: (Antwort) fertig Status 
Datum: 22:14 Di 04.06.2013
Autor: Fulla

Hallo zurück!

> Hallo,
> also ich hab folgendes als Idee gehabt:
> f(g(l(h(x)))) [mm]\gdw[/mm] f(g(l(|x|))) [mm]\gdw[/mm] f(g(l(x))) [mm]\gdw f(g(\bruch{1}{x})) \gdw f(e^{\bruch{1}{x}}) \gdw -((e^{\bruch{1}{x}})^{2})[/mm]

Sorry, als ich geantwortet hab, war deine Aufgabenstellung noch anders. Da stand noch nicht, dass die Funktion gegeben ist und du die Verknüpfung angeben sollst.

Schau dir dazu Marcels Antwort an, da steht alles Nötige drin.

Lieben Gruß,
Fulla

Bezug
        
Bezug
Komposition: Antwort
Status: (Antwort) fertig Status 
Datum: 21:30 Di 04.06.2013
Autor: Marcel

Hallo,

> Gegeben seien die folgenden Funktionen: f; g; h : [mm]\IR \to \IR[/mm]
> mit f(x) = [mm]-(x^2),[/mm]

kann man übrigens direkt auch so schreiben: [mm] $f(x)=-\;x^2\,.$ [/mm]

> [mm] g(x) = exp(x), h(x) = |x|[/mm]
>  sowie l : [mm]\IR\{0}[/mm] mit l(x) = [mm]\bruch{1}{x}[/mm]

> b.)  Drücken Sie F : [mm]\IR \to \IR[/mm] mit F(x) = -exp(-2x) als
> Komposition der obigen Funktionen aus.

beachte:
[mm] $$-\exp(-2x)=-\;\left(\frac{1}{\exp(x)}\right)^2$$ [/mm]

Du brauchst also [mm] $f,g\,$ [/mm] und [mm] $l\,.$ [/mm]

Gruß,
  Marcel

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Funktionen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorkurse.de
[ Startseite | Mitglieder | Teams | Forum | Wissen | Kurse | Impressum ]