www.vorkurse.de
Ein Projekt von vorhilfe.de
Die Online-Kurse der Vorhilfe

E-Learning leicht gemacht.
Hallo Gast!einloggen | registrieren ]
Startseite · Mitglieder · Teams · Forum · Wissen · Kurse · Impressum
Forenbaum
^ Forenbaum
Status Mathe-Vorkurse
  Status Organisatorisches
  Status Schule
    Status Wiederholung Algebra
    Status Einführung Analysis
    Status Einführung Analytisc
    Status VK 21: Mathematik 6.
    Status VK 37: Kurvendiskussionen
    Status VK Abivorbereitungen
  Status Universität
    Status Lerngruppe LinAlg
    Status VK 13 Analysis I FH
    Status Algebra 2006
    Status VK 22: Algebra 2007
    Status GruMiHH 06
    Status VK 58: Algebra 1
    Status VK 59: Lineare Algebra
    Status VK 60: Analysis
    Status Wahrscheinlichkeitst

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Extremwertprobleme" - Komplexere Extremwertprobleme
Komplexere Extremwertprobleme < Extremwertprobleme < Differenzialrechnung < Analysis < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Extremwertprobleme"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Komplexere Extremwertprobleme: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 18:41 Do 07.09.2006
Autor: Stefan-auchLotti

Aufgabe
Welches rechtwinklige Dreieck mit der Hypotenuse 6 cm erzeugt bei Rotation um eine Kathete (um die Hypothenuse) den Rotationskörper größten Volumens?

Hallo,

Mein Ansatz ist:

[mm] V_{Kreiskegel}=\bruch{\pi*r^2h}{3} [/mm]


Das war's auch schon!

Danke für schnelle Hilfe!

Gruß,

Stefan.

        
Bezug
Komplexere Extremwertprobleme: Antwort
Status: (Antwort) fertig Status 
Datum: 19:44 Do 07.09.2006
Autor: Manu_Chemnitz

Hallo Stefan,

Hier zunächst die Lösung für die Rotation um die Kathete(n):

Also nach dem Satz des Pythagoras lauten die beiden Katheten

[mm] a = \wurzel{36-b^2}, b = \wurzel{36-a^2} [/mm]

Eine davon dient als Höhe und die andere als Radius des Kreiskegels (welche man als was einsetzt, ist egal) und das kann man in die Volumenformel einsetzen:

[mm] V = \bruch{\pi * (\wurzel{36-h^2})^2 * \wurzel{36-r^2}}{3} = \bruch{\pi * (36-h^2)*h}{3} = 12\pi h - \bruch{\pi}{3} h^3 [/mm]

Dies ist jetzt die Größe, die maximiert werden muss, also bilden wir die erste Ableitung:

[mm] V' = 12 \pi - \pi h^2 [/mm]

Setzt man diese Null, erhält man als Lösung

[mm] h = 2 \wurzel{3} [/mm]

Und wiederum nach dem Satz des Pythagoras muss dann die Kathete, für den Radius [mm] 2 \wurzel{6} [/mm] sein.

Nun zu der Aufgabe, dass das Dreieck um die Hypothenuse rotieren soll: Dabei entstehen dann zwei Kreiskegel, sodass wir die Höhe über der Hypothenuse h und die Hypothenusenabschnitte p ("unter" a) und q ("unter" b) benötigen. Nach dem Kathetensatz gilt

[mm] a^2 = cp, b^2 = cq [/mm], also in unserem Fall

[mm] 36 - b^2 = 6p, 36 - a^2 = 6q [/mm].

Formt man dies um, erhält man

[mm] p = \bruch{1}{6} a^2, q = 6 - \bruch{1}{6} a^2 [/mm].

Und h kann man über den Höhensatz [mm] h^2 = pq [/mm] so berechnen:

[mm] h = \wurzel{pq} = \wurzel{a^2- \bruch{1}{36} a^4 [/mm]

Die Volumenformel des Rotationskörpers setzt sich nun aus den 2 Kegeln zusammen. Beide haben den Radius h und als Höhe p bzw. q. Also lautet die Volumenformel

[mm] V = \bruch{\pi}{3} (a^2-\bruch{1}{36}a^4)(6-\bruch{1}{6}a^2+\bruch{1}{6} a^2) = \bruch{\pi}{2} (a^2-\bruch{1}{36} a^4) [/mm]

Die erste Ableitung davon lautet

[mm] V' = \bruch{\pi}{2}(2a-\bruch{1}{9}a^3) [/mm]

und bei Nullsetzen erhält man

[mm] a = 3 \wurzel{2} [/mm].

Nach dem Satz des Pythagoras muss dann auch die zweite Kathete, b, gleich [mm] 3 \wurzel{2} [/mm] sein.

Mit freundlichen Grüßen

Manuela

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Extremwertprobleme"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorkurse.de
[ Startseite | Mitglieder | Teams | Forum | Wissen | Kurse | Impressum ]