www.vorkurse.de
Ein Projekt von vorhilfe.de
Die Online-Kurse der Vorhilfe

E-Learning leicht gemacht.
Hallo Gast!einloggen | registrieren ]
Startseite · Mitglieder · Teams · Forum · Wissen · Kurse · Impressum
Forenbaum
^ Forenbaum
Status Mathe-Vorkurse
  Status Organisatorisches
  Status Schule
    Status Wiederholung Algebra
    Status Einführung Analysis
    Status Einführung Analytisc
    Status VK 21: Mathematik 6.
    Status VK 37: Kurvendiskussionen
    Status VK Abivorbereitungen
  Status Universität
    Status Lerngruppe LinAlg
    Status VK 13 Analysis I FH
    Status Algebra 2006
    Status VK 22: Algebra 2007
    Status GruMiHH 06
    Status VK 58: Algebra 1
    Status VK 59: Lineare Algebra
    Status VK 60: Analysis
    Status Wahrscheinlichkeitst

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Uni-Analysis-Komplexe Zahlen" - Komplexen Ausdruck berechnen
Komplexen Ausdruck berechnen < Komplexe Zahlen < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Analysis-Komplexe Zahlen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Komplexen Ausdruck berechnen: Aufgabe 1
Status: (Frage) beantwortet Status 
Datum: 20:46 Mo 20.06.2011
Autor: Hanni85

Aufgabe
Berechnen Sie den Ausdruck [mm] \bruch{z_{2}}{z_{1}+z_{2}} [/mm] mit den folgenden Zahlen:

[mm] z_{1}=1-i [/mm]

[mm] z_{2}=2*e^{\bruch{3}{4}*\pi*i} [/mm]

Moin,
ich komme bei dieser Aufgabe einfach nicht weiter. Das Ergebnis soll: [mm] \bruch{2}{2-\wurzel{2}} [/mm] sein. Aber ich komme da nicht annähernd hin.
Habe erst versucht z2 in die kartesische Form zu bringen:
[mm] z_{2}= -\wurzel{2}+i*\wurzel{2} [/mm]
hab ich da raus. Wenn ich nun [mm] z_{1}+z_{2} [/mm] rechne, komme ich auf: [mm] (-\wurzel{2}+1)+i*(\wurzel{2}-1) [/mm]
Was mich aber garnicht weiter bringt, bekomme dann beim teilen nich die komplexen Teile weg.
Wahrscheinlich hab ich einfach nur irgendwo nen kleinen Denkfehler oder Rechenfehler, nur ich sitz hier nun schon seit ner Stunde und finde keine Lösung. Danke im Vorraus.
mfg Hanni

        
Bezug
Komplexen Ausdruck berechnen: Antwort
Status: (Antwort) fertig Status 
Datum: 20:53 Mo 20.06.2011
Autor: Gonozal_IX

Hallo Hanni,


>  Habe erst versucht z2 in die kartesische Form zu bringen:

Gute Idee ;-)

>  [mm]z_{2}= -\wurzel{2}+i*\wurzel{2}[/mm]

[ok]

> auf: [mm](-\wurzel{2}+1)+i*(\wurzel{2}-1)[/mm]

[ok]

>  Was mich aber garnicht weiter bringt, bekomme dann beim
> teilen nich die komplexen Teile weg.

Ja, wie berechnet man den den Quotienten von 2 komplexen Zahlen?
Grundlagen nacharbeiten!

Erweitere mit dem komplexkonjugierten des Nenners, hier also mit:

[mm] $\overline{z_1 + z_2} [/mm] = [mm] (-\wurzel{2}+1)-i*(\wurzel{2}-1)$ [/mm]


MFG,
Gono.

Bezug
                
Bezug
Komplexen Ausdruck berechnen: Frage (reagiert)
Status: (Frage) reagiert/warte auf Reaktion Status 
Datum: 21:16 Mo 20.06.2011
Autor: Hanni85

Ok, erstmal Danke.

also ich habe dann nun: [mm] \bruch{(-\wurzel{2}+i*\wurzel{2})*((-\wurzel{2}+1)-i*(\wurzel{2}-1))}{((-\wurzel{2}+1)+i*(\wurzel{2}-1))*((-\wurzel{2}+1)-i*(\wurzel{2}-1))} [/mm]
daraus habe ich:
[mm] \bruch{4-2*\wurzel{2}+2*i*(-2+\wurzel{2})}{6-4*\wurzel{2}} [/mm]
errechnet.
Nun habe ich aber immernoch das i. Oder stimmt das so nicht?
mfg Hanni

Edit: Ich habe meinen Fehler selbst gefunden.
Nun habe ich raus:
[mm] \bruch{4-2*\wurzel{2}}{6-4*\wurzel{2}}=3,414 [/mm] (was auch das Ergebnis ist!)
Danke nochmal!

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Analysis-Komplexe Zahlen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorkurse.de
[ Startseite | Mitglieder | Teams | Forum | Wissen | Kurse | Impressum ]