www.vorkurse.de
Ein Projekt von vorhilfe.de
Die Online-Kurse der Vorhilfe

E-Learning leicht gemacht.
Hallo Gast!einloggen | registrieren ]
Startseite · Mitglieder · Teams · Forum · Wissen · Kurse · Impressum
Forenbaum
^ Forenbaum
Status Mathe-Vorkurse
  Status Organisatorisches
  Status Schule
    Status Wiederholung Algebra
    Status Einführung Analysis
    Status Einführung Analytisc
    Status VK 21: Mathematik 6.
    Status VK 37: Kurvendiskussionen
    Status VK Abivorbereitungen
  Status Universität
    Status Lerngruppe LinAlg
    Status VK 13 Analysis I FH
    Status Algebra 2006
    Status VK 22: Algebra 2007
    Status GruMiHH 06
    Status VK 58: Algebra 1
    Status VK 59: Lineare Algebra
    Status VK 60: Analysis
    Status Wahrscheinlichkeitst

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Geraden und Ebenen" - Komplexe aufgabe
Komplexe aufgabe < Geraden und Ebenen < Lin. Algebra/Vektor < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Geraden und Ebenen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Komplexe aufgabe: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 15:57 Mi 17.12.2008
Autor: puldi

Guten Tag,

"E enthält die z-Achse, den Punkt (1|1|0) und steht senkrecht auf der x-y-Ebene"

Erstelle eine Normalengleichung:

[x-(1|1|0)]*(1|1|0)

Richtig?

Danke!

        
Bezug
Komplexe aufgabe: nicht ganz richtig
Status: (Antwort) fertig Status 
Datum: 16:12 Mi 17.12.2008
Autor: informix

Hallo puldi,

> Guten Tag,
>  
> "E enthält die z-Achse, den Punkt (1|1|0) und steht
> senkrecht auf der x-y-Ebene"
>  
> Erstelle eine Normalengleichung:
>  
> [x-(1|1|0)]*(1|1|0)
>  
> Richtig?
>  

nicht ganz, weil du keine Gleichung aufgestellt hast! ;-)
Im übrigen aber [ok]

Gruß informix

Bezug
                
Bezug
Komplexe aufgabe: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 16:16 Mi 17.12.2008
Autor: puldi

also noch = 0 !?

Danke!

Bezug
                        
Bezug
Komplexe aufgabe: Antwort
Status: (Antwort) fertig Status 
Datum: 16:22 Mi 17.12.2008
Autor: Blech


> also noch = 0 !?
>  

E enthält die z-Achse, also insbesondere den Ursprung, aber wenn Du x=(0;0;0) einsetzt, kommt nicht 0 raus.

Wie schon in der anderen Antwort geschrieben, hast Du beim Normalenvektor ein - vergessen. Du solltest immer versuchen, an einem einfachen Punkt zu überprüfen, ob Dein Ergebnis stimmen kann. Außer es war nur ein Tippfehler. =)

ciao
Stefan


Bezug
                
Bezug
Komplexe aufgabe: Korrekturmitteilung
Status: (Korrektur) kleiner Fehler Status 
Datum: 16:17 Mi 17.12.2008
Autor: reverend

Mal abgesehen davon, dass es kleine Gleichung ist,
fehlt mir in dem Normalenvektor noch genau ein Minuszeichen!

Mit anderen Worten: noch ist die Lösung falsch.

Bezug
                
Bezug
Komplexe aufgabe: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 16:30 Mi 17.12.2008
Autor: puldi

Mmm.. danke.

aber warum ein - ?

Das verstehe ich (noch) nicht ganz...

Danke!!

Bezug
                        
Bezug
Komplexe aufgabe: Antwort
Status: (Antwort) fertig Status 
Datum: 16:40 Mi 17.12.2008
Autor: reverend

Erwischt.
Es war kein Schreibfehler.

Deine Ebene soll den Punkt [mm] \vektor{1\\1\\0} [/mm] und die gesamte z-Achse beinhalten. Damit übrigens ist die Zusatzinformation "senkrecht zur x-y-Ebene" überflüssig, weil schon enthalten. Alle Ebenen, die die z-Achse oder eine Parallele dazu enthalten, stehen senkrecht auf der x-y-Ebene.

In der Darstellungsform, die wählst - der Normalform - brauchst Du nun einen Normalenvektor. Dafür kannst Du im allgemeinen nicht den Ortsvektor eines gegebenen Punktes nehmen! Natürlich sind Fälle konstruierbar, wo das doch geht, aber ein solcher liegt hier nicht vor.

Du hast zwei Möglichkeiten, einen Normalenvektor der Ebene zu finden. Für beide brauchst Du drei Punkte auf der Ebene. Einer ist ja schon gegeben, und zwei beliebige Punkte auf der z-Achse wirst Du schon finden. Es verkürzt die Rechnung, wenn einer der beiden Punkte der Nullpunkt ist.

Dann kannst Du entweder ein lineares Gleichungssystem aufstellen, oder Du kannst den Normalenvektor aus einem Vektorprodukt ermitteln.

Dann mal los.

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Geraden und Ebenen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorkurse.de
[ Startseite | Mitglieder | Teams | Forum | Wissen | Kurse | Impressum ]