www.vorkurse.de
Ein Projekt von vorhilfe.de
Die Online-Kurse der Vorhilfe

E-Learning leicht gemacht.
Hallo Gast!einloggen | registrieren ]
Startseite · Mitglieder · Teams · Forum · Wissen · Kurse · Impressum
Forenbaum
^ Forenbaum
Status Mathe-Vorkurse
  Status Organisatorisches
  Status Schule
    Status Wiederholung Algebra
    Status Einführung Analysis
    Status Einführung Analytisc
    Status VK 21: Mathematik 6.
    Status VK 37: Kurvendiskussionen
    Status VK Abivorbereitungen
  Status Universität
    Status Lerngruppe LinAlg
    Status VK 13 Analysis I FH
    Status Algebra 2006
    Status VK 22: Algebra 2007
    Status GruMiHH 06
    Status VK 58: Algebra 1
    Status VK 59: Lineare Algebra
    Status VK 60: Analysis
    Status Wahrscheinlichkeitst

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Uni-Analysis-Komplexe Zahlen" - Komplexe Zahlen
Komplexe Zahlen < Komplexe Zahlen < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Analysis-Komplexe Zahlen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Komplexe Zahlen: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 01:03 Mi 03.04.2013
Autor: Hellsing89

Aufgabe
Bestimmen Sie alle komplexen Zahlen z mit [mm] z^4=-16 [/mm] in der Form x+iy mit [mm] x,y\in\IR. [/mm]


Ich bin was komplexe Zahlen angeht leider nicht so bewandert. Wir haben zu dieser Aufgabe eine Musterlösung bekommen, jedoch kann ich sie nicht nachvollziehen.

[Dateianhang nicht öffentlich]

Kann mir jemand erklären, wie die Lösung zu stande kommt ?

Dateianhänge:
Anhang Nr. 1 (Typ: png) [nicht öffentlich]
        
Bezug
Komplexe Zahlen: Antwort
Status: (Antwort) fertig Status 
Datum: 01:16 Mi 03.04.2013
Autor: reverend

Hallo Hellsing,

> Bestimmen Sie alle komplexen Zahlen z mit [mm]z^4=-16[/mm] in der
> Form x+iy mit [mm]x,y\in\IR.[/mm]

>

> Ich bin was komplexe Zahlen angeht leider nicht so
> bewandert.

Was heißt das? Ich nehme an, dass die Übungsaufgabe ungefähr dem Stand entspricht, den Du haben solltest.

> Wir haben zu dieser Aufgabe eine Musterlösung
> bekommen, jedoch kann ich sie nicht nachvollziehen.

Hm. Die Exponentialform komplexer Zahlen kennst Du aber, oder?

> [Dateianhang nicht öffentlich]

>

> Kann mir jemand erklären, wie die Lösung zu stande kommt
> ?

Das ganze Geheimnis heißt MBMoivre-Formel.

Grüße
reverend

Bezug
                
Bezug
Komplexe Zahlen: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 04:07 Mi 03.04.2013
Autor: Marcel

Hi reverend,

> > [Dateianhang nicht öffentlich]
>  >
>  > Kann mir jemand erklären, wie die Lösung zu stande

> kommt
>  > ?

>  
> Das ganze Geheimnis heißt MBMoivre-Formel.

in Ergänzung mit der []Eulerschen Identität. (Die taucht in Deinem
Link ja in versteckter Form auf - vor allem wird sie auch in der vorgestellten
Lösung explizit angewendet!)

Gruß,
  Marcel

Bezug
        
Bezug
Komplexe Zahlen: Antwort
Status: (Antwort) fertig Status 
Datum: 04:05 Mi 03.04.2013
Autor: Marcel

Hallo,

> Bestimmen Sie alle komplexen Zahlen z mit [mm]z^4=-16[/mm] in der
> Form x+iy mit [mm]x,y\in\IR.[/mm]
>  
> Ich bin was komplexe Zahlen angeht leider nicht so
> bewandert. Wir haben zu dieser Aufgabe eine Musterlösung
> bekommen, jedoch kann ich sie nicht nachvollziehen.
>  
> [Dateianhang nicht öffentlich]
>  
> Kann mir jemand erklären, wie die Lösung zu stande kommt
> ?

ich find' die Lösung so nicht gut - man kann das ein wenig übersichtlicher
gestalten. Wobei das nicht heißt, dass die Lösung extrem kompliziert sei, dass
da etwas falsch oder umständlich sei. Ich finde es nur übersichtlicher, wenn
man es so angeht, wie ich es im Folgenden mache! (Hilfreich ist es
sicherlich, zu wissen: Für $x [mm] \in \IR$ [/mm] gilt [mm] $e^{ix}=\cos(x)+i\,\sin(x)\,.$ [/mm] Und mach' Dir klar,
dass die  Abbildung
$$f [mm] \colon [0,2\pi) \to \{z \in \IC:\;\;|z|=1\}$$ [/mm]
mit
[mm] $$f(x):=e^{ix}\;\;\;\;\;\;(\;x \in [0,2\pi)\;)$$ [/mm]
bijektiv (und auch "wohldefiniert") ist ("wohldefiniert" meine ich hier in dem
Sinne, dass Du Dir klarmachst, dass für jedes $x [mm] \in [0,2\pi)$ [/mm] auch [mm] $|e^{ix}|=1$ [/mm]
ist - das kannst Du auch für jedes $x [mm] \in \IR$ [/mm] beweisen!)

Aber selbst das braucht man noch nicht in der Art und Weise hier. Ich zeige
Dir im Folgenden auch, warum.)


Es gilt nämlich:
[mm] $$z^4=-16$$ [/mm]
[mm] $$\iff (z/2)^4=-1\,.$$ [/mm]

Bestimme nun mal alle komplexen Zahlen [mm] $w=w_1+i\,w_2$ ($w_1,\;w_2 \in \IR$) [/mm]
mit [mm] $w^2=-1\,.$ [/mm] Derer gibt es genau vier an der Zahl.

Damit bist Du dann schnell (und sogar nur mit elementarsten Überlegungen)
fertig.

Hinweis:
[mm] $$(w_1+i\,w_2)^2=-1$$ [/mm]
[mm] $$\iff ({w_1}^2-{w_2}^2+1)+i\,(2\,w_1\,w_2)=0\,$$ [/mm]
und eine komplexe Zahl ist genau dann Null, wenn sowohl ihr Realteil als auch
ihr Imaginärteil Null ist. Damit bekommst Du nun ein Gleichungssystem in [mm] $w_1,\,w_2\,,$ [/mm]
mit zwei Gleichungen, dessen Lösungsmenge Du bestimmen musst, und damit
kommst Du dann weiter. (Du siehst: Ich benutze hier das Wissen aus dem
blaumarkierten Teil gar nicht - Du findest []auf Seite 69 ff., hier (klick!)
etwas zu dem obenstehenden. Und beachte: Ist $z [mm] \in \IC$ [/mm] mit $z [mm] \not=0\,,$ [/mm]
so ist [mm] $\frac{z}{|z|} \in \IC$ [/mm] eine komplexe Zahl, deren Betrag wegen
[mm] $$\left|\frac{z}{|z|}\right|=\frac{|z|}{|\;\,|z|\,\;|}=\frac{|z|}{|z|}=1$$ [/mm]
eben [mm] $1\,$ [/mm] ist. Dann gibt es also (genau) eine Zahl in [mm] $\phi \in [0,2\pi)$ [/mm] mit
[mm] $$e^{i\,\phi}=z/|z|\,.$$ [/mm]
Solche (einfachen) Überlegungen liegen dem ganzen zu Grunde. Und wenn
Du [mm] $\IC$ [/mm] mit [mm] $\IR^2$ [/mm] identifizierst und jetzt die Gleichheit [mm] "$e^{i\,\phi}=\cos(x)+i\,\sin(x)$" [/mm]
"einfach erstmal glaubst", dann kannst Du Dir schonmal schnell geometrisch
klarmachen, was dann die Abbildung
[mm] $$[0,2\pi) \ni \phi \mapsto e^{i\,\phi}=\cos(\phi)+i\,\sin(\phi)\hat=(\cos(\phi),\;\sin(\phi))$$ [/mm]
geometrisch beschreibt... (und Du wüßtest auch, was passieren sollte, wenn
man bei dieser Abbildung [mm] "$[0,2\pi)$ [/mm] ausdehnt")).

P.S. Oder sagen wir mal: Die Lösung oben ist schon sehr knapp aufgeschrieben,
da steht ja nur ansatzweise, was gerechnet worden ist bei [mm] $z_1\,,$ [/mm] und bei
dem Rest wird Wissen verwendet, auf das nicht verwiesen wird. Vielleicht
sagt Dir aber auch das Stichwort "n-te Einheitswurzel" (in [mm] $\IC$) [/mm] etwas. Denn wenn
man die verstanden hat, und sich ein wenig im Einheitskreis (des [mm] $\IR^2$ [/mm] bzw. [mm] $\IC$) [/mm]
auskennt, braucht man da auch nicht mehr wirklich viel rechnen. Wobei man
die Aufgabe auch komplett rechnerisch lösen kann - genau das wirst Du
eigentlich tun, wenn Du meinen Lösungsweg zu Ende rechnest. Und das mit
Mitteln, die Du sogar "nur" aus der Schule zur Verfügung hast! (Alles, was
"nicht Schule" ist, habe ich ja oben schon hingeschrieben, wie das zu
behandeln ist!)

P.P.S. Bei der (von Dir geposteten) Lösung oben wird übrigens auch
[mm] $$z=|z|*e^{i \phi}$$ [/mm]
mit einem (geeigneten) [mm] $\phi \in \IR$ [/mm] benutzt - dieses ist eindeutig bis auf einen
Summanden aus [mm] $2\pi*\IZ\,$ [/mm] - und wenn man [mm] $\phi \in [0,2\pi)$ [/mm] fordert, so ist es
sogar eindeutig. Du kannst es in Abhängigkeit von [mm] $\text{Re}(z)$ [/mm] und [mm] $\text{Im}(z)$ [/mm]
angeben...

Gruß,
  Marcel

Bezug
        
Bezug
Komplexe Zahlen: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 15:15 Mi 03.04.2013
Autor: Marcel

Hallo Hellsing,

nebenbei: hier (klick!) hat jemand Links zu Seiten, die sich mi komplexen Zahlen
beschäftigen, gesammelt. Ich denke,dass jedenfalls der erste schon für Dich
interessant ist (in dem von mir verlinkten Skript wird übrigens [mm] $\cos(x)\,$ [/mm] als
Realteil von [mm] $e^{ix}$ [/mm] definiert, und [mm] $\sin(x)\,$ [/mm] als Imaginärteil von [mm] $e^{ix}\,.$ [/mm] Da ist dann
"nichts Magisches" dabei, dass dann [mm] $e^{ix}=\cos(x)+i\,\sin(x)$ [/mm] gilt...)

P.S. Beachte, dass manche Autoren die imaginäre Einheit nicht mit [mm] $i\,,$ [/mm] sondern [mm] $j\,$ [/mm]
bezeichnen (in der Physik scheint das gängig(er)).

Gruß,
  Marcel

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Analysis-Komplexe Zahlen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorkurse.de
[ Startseite | Mitglieder | Teams | Forum | Wissen | Kurse | Impressum ]