www.vorkurse.de
Ein Projekt von vorhilfe.de
Die Online-Kurse der Vorhilfe

E-Learning leicht gemacht.
Hallo Gast!einloggen | registrieren ]
Startseite · Mitglieder · Teams · Forum · Wissen · Kurse · Impressum
Forenbaum
^ Forenbaum
Status Mathe-Vorkurse
  Status Organisatorisches
  Status Schule
    Status Wiederholung Algebra
    Status Einführung Analysis
    Status Einführung Analytisc
    Status VK 21: Mathematik 6.
    Status VK 37: Kurvendiskussionen
    Status VK Abivorbereitungen
  Status Universität
    Status Lerngruppe LinAlg
    Status VK 13 Analysis I FH
    Status Algebra 2006
    Status VK 22: Algebra 2007
    Status GruMiHH 06
    Status VK 58: Algebra 1
    Status VK 59: Lineare Algebra
    Status VK 60: Analysis
    Status Wahrscheinlichkeitst

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Lineare Gleichungssysteme" - Komplexe Zahlen
Komplexe Zahlen < Gleichungssysteme < Lineare Algebra < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Gleichungssysteme"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Komplexe Zahlen: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 15:18 So 04.11.2012
Autor: xxela89xx

Aufgabe
[mm] x_{1},x_{2},x_{3} [/mm] aus C bestimmen, so dass das LGS gelöst wird.


A= [mm] \pmat{ 2i & -2 & -2+2i \\ 1-i & 2+i & 2+i \\ i & -1 & i} [/mm]   und b = [mm] \vektor{2i \\ 1-i \\ i} [/mm]

Hallo,

ich komme nicht mehr weiter. Nach dem ersten Schritt, wo ich die 3. Gl mit 2 multipl. und die 1.Gl von der 3. subtrahiert habe, hatte ich in der 3. stehen:

0 0 -2 = 0

In den reellen Zahlen wäre das LGS nciht lösbar, was ist aber in den komplexen Zahlen, kann ich hier weiterrechnen?
Ich habe weitergerechnet und die ZSF erreicht:

[mm] \pmat{ 8i-4 & 0 & 12-4i \\ 0 & -4-2i & 4i \\ 0 & 0 & -2} \vektor{8i +4\\ 0 \\0} [/mm]

Wie mache ich nun weiter oder ist das falsch?


        
Bezug
Komplexe Zahlen: Antwort
Status: (Antwort) fertig Status 
Datum: 15:36 So 04.11.2012
Autor: M.Rex

Hallo


> [mm]x_{1},x_{2},x_{3}[/mm] aus C bestimmen, so dass das LGS gelöst
> wird.
>  
>
> A= [mm]\pmat{ 2i & -2 & -2+2i \\ 1-i & 2+i & 2+i \\ i & -1 & i}[/mm]
>   und b = [mm]\vektor{2i \\ 1-i \\ i}[/mm]
>  Hallo,
>  
> ich komme nicht mehr weiter. Nach dem ersten Schritt, wo
> ich die 3. Gl mit 2 multipl. und die 1.Gl von der 3.
> subtrahiert habe, hatte ich in der 3. stehen:
>
> 0 0 -2 = 0
>
> In den reellen Zahlen wäre das LGS nciht lösbar, was ist
> aber in den komplexen Zahlen, kann ich hier weiterrechnen?

Warum? Selbst in [mm] \IR [/mm] ist [mm] 2x_{3}=0 [/mm] lösbar.

> Ich habe weitergerechnet und die ZSF erreicht:
>  
> [mm]\pmat{ 8i-4 & 0 & 12-4i \\ 0 & -4-2i & 4i \\ 0 & 0 & -2} \vektor{8i +4\\ 0 \\ 0}[/mm]
>
> Wie mache ich nun weiter oder ist das falsch?
>  

I
Ich komme auf andere Werte.

[mm]\pmat{ 2i & -2 & -2+2i & | & 2i \\ 1-i & 2+i & 2+i & | & 1-i \\ i & -1 & i & | & i}[/mm]

[mm]\stackrel{I:2}{\Leftrightarrow}\pmat{ i & -1 & -1+i & | & i \\ 1-i & 2+i & 2+i & | & 1-i \\ i & -1 & i & | & i}[/mm]

[mm]\stackrel{I-III}{\Leftrightarrow}\pmat{ i & -1 & -1+i & | & i \\ 1-i & 2+i & 2+i & | & 1-i \\ 0 & 0 & -1 & | & 0}[/mm]

[mm]\stackrel{I\cdot(1-i);II\cdot i}{\Leftrightarrow}\pmat{ i(1-i) & -1(1-i) & (-1+i)(1-i) & | & i(1-i) \\ (1-i)i & (2+i)i & (2+i)i & | & (1-i)i \\ 0 & 0 & -1 & | & 0}[/mm]


[mm]\stackrel{Termumf.}{\Leftrightarrow}\pmat{ i+1 & i-1 & 2i & | & i+1 \\ i+1 & 2i-1 & 2i-1 & | & i+1 \\ 0 & 0 & -1 & | & 0}[/mm]

[mm]\stackrel{I-II}{\Leftrightarrow}\pmat{ i+1 & i-1 & 2i & | & i+1 \\ 0 & -i & 1 & | & 0 \\ 0 & 0 & -1 & | & 0}[/mm]



Marius




Bezug
                
Bezug
Komplexe Zahlen: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 15:45 So 04.11.2012
Autor: xxela89xx

Hmm, ok, ich rechne das noch einmal nach. Aber ich weiß jetzt nicht, was für eine Lsg. ich aus der letzten Gleichung ziehen kann? :S

Bezug
                        
Bezug
Komplexe Zahlen: Antwort
Status: (Antwort) fertig Status 
Datum: 16:02 So 04.11.2012
Autor: teo

Hallo,

> Hmm, ok, ich rechne das noch einmal nach. Aber ich weiß
> jetzt nicht, was für eine Lsg. ich aus der letzten
> Gleichung ziehen kann? :S

Naja, offensichtlich ist [mm] $x_3 [/mm] = 0$ zu wählen!

Bezug
                
Bezug
Komplexe Zahlen: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 15:59 So 04.11.2012
Autor: xxela89xx

Ich habe noch 2 Fragen. Bei dem 3. LGS von unten multiplizierst du die 2. Gl mit *i*, wieso steht aber ganz rechts (1-i) (1-i) anstatt  (1-i) i ??

Und bei der Termumformung hast du (-1+i) (1-i) ausgerechnet als 2i-2. Müsste das nicht 2i sein?  
(-1+i) (1-i)
= -1 + i + i [mm] -i^2 [/mm]
= -1 + 2i -(-1)
= -1+ 2i +1
= 2i     oder???

Bezug
                        
Bezug
Komplexe Zahlen: Antwort
Status: (Antwort) fertig Status 
Datum: 17:01 So 04.11.2012
Autor: M.Rex

Hallo

> Ich habe noch 2 Fragen. Bei dem 3. LGS von unten
> multiplizierst du die 2. Gl mit *i*, wieso steht aber ganz
> rechts (1-i) (1-i) anstatt  (1-i) i ??

Oh ja, sorry

>  
> Und bei der Termumformung hast du (-1+i) (1-i) ausgerechnet
> als 2i-2. Müsste das nicht 2i sein?  
> (-1+i) (1-i)
> = -1 + i + i [mm]-i^2[/mm]
> = -1 + 2i -(-1)
>  = -1+ 2i +1
> = 2i     oder???

Hast recht.

Ich verbessere meine Antwort von oben dahingehend

Marius



Bezug
                                
Bezug
Komplexe Zahlen: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 18:26 So 04.11.2012
Autor: xxela89xx

Folgt dann aus dem Ganzen, dass
x1= 1
x2= 0
x3= 0 ist??

Bezug
                                        
Bezug
Komplexe Zahlen: Antwort
Status: (Antwort) fertig Status 
Datum: 18:33 So 04.11.2012
Autor: MathePower

Hallo xxela89xx,

> Folgt dann aus dem Ganzen, dass
> x1= 1
> x2= 0
>  x3= 0 ist??


Ja.


Gruss
MathePower

Bezug
                                                
Bezug
Komplexe Zahlen: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 18:40 So 04.11.2012
Autor: xxela89xx

Dankeeeeee :)

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Gleichungssysteme"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorkurse.de
[ Startseite | Mitglieder | Teams | Forum | Wissen | Kurse | Impressum ]