www.vorkurse.de
Ein Projekt von vorhilfe.de
Die Online-Kurse der Vorhilfe

E-Learning leicht gemacht.
Hallo Gast!einloggen | registrieren ]
Startseite · Mitglieder · Teams · Forum · Wissen · Kurse · Impressum
Forenbaum
^ Forenbaum
Status Mathe-Vorkurse
  Status Organisatorisches
  Status Schule
    Status Wiederholung Algebra
    Status Einführung Analysis
    Status Einführung Analytisc
    Status VK 21: Mathematik 6.
    Status VK 37: Kurvendiskussionen
    Status VK Abivorbereitungen
  Status Universität
    Status Lerngruppe LinAlg
    Status VK 13 Analysis I FH
    Status Algebra 2006
    Status VK 22: Algebra 2007
    Status GruMiHH 06
    Status VK 58: Algebra 1
    Status VK 59: Lineare Algebra
    Status VK 60: Analysis
    Status Wahrscheinlichkeitst

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Uni-Analysis-Komplexe Zahlen" - Komplexe Zahlen
Komplexe Zahlen < Komplexe Zahlen < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Analysis-Komplexe Zahlen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Komplexe Zahlen: Tipp
Status: (Frage) beantwortet Status 
Datum: 16:42 So 15.07.2012
Autor: tiiinChen

Aufgabe
[mm] (\bruch{1}{\wurzel{2}}+\bruch{i}{\wurzel{2}})^{144} [/mm] * [mm] (\bruch{1}{2}*\wurzel{2}-\bruch{1}{2}*\wurzel{2}*i)^{148} [/mm]

Hallo zusammen,

Ich habe ein Problem bei der genannten Aufgabe, weiß nicht mehr wie ich weiter rechnen muss. Hier erst einmal mein Ansatz:

[mm] (\bruch{1+i}{\wurzel{2}})^{144}*(\bruch{\wurzel{2}-\wurzel{2}*i}{2})^{148} [/mm]

= [mm] (\bruch{(1+i)*\wurzel{2}}{\wurzel{2}*\wurzel{2}})^{144}*(\bruch{\wurzel{2}-\wurzel{2}*i}{2})^{148} [/mm]

= [mm] (\bruch{\wurzel{2}+\wurzel{2}*i}{2})^{144}*(\bruch{\wurzel{2}-\wurzel{2}*i}{2})^{148} [/mm]

an diesem Punkt komm ich dann nicht mehr weiter - könnt ihr mir vielleicht weiter helfen und habt einen Tipp für mich? bzw. ist mein bisheriger Ansatz richtig?

Vielen Dank schon einmal :)

Liebe Grüße
Martina

Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.

        
Bezug
Komplexe Zahlen: Antwort
Status: (Antwort) fertig Status 
Datum: 16:56 So 15.07.2012
Autor: MathePower

Hallo   tiiinChen,

[willkommenmr]


> [mm](\bruch{1}{\wurzel{2}}+\bruch{i}{\wurzel{2}})^{144}[/mm] *
> [mm](\bruch{1}{2}*\wurzel{2}-\bruch{1}{2}*\wurzel{2}*i)^{148}[/mm]
>  Hallo zusammen,
>  
> Ich habe ein Problem bei der genannten Aufgabe, weiß nicht
> mehr wie ich weiter rechnen muss. Hier erst einmal mein
> Ansatz:
>  
> [mm](\bruch{1+i}{\wurzel{2}})^{144}*(\bruch{\wurzel{2}-\wurzel{2}*i}{2})^{148}[/mm]
>
> =
> [mm](\bruch{(1+i)*\wurzel{2}}{\wurzel{2}*\wurzel{2}})^{144}*(\bruch{\wurzel{2}-\wurzel{2}*i}{2})^{148}[/mm]
>
> =
> [mm](\bruch{\wurzel{2}+\wurzel{2}*i}{2})^{144}*(\bruch{\wurzel{2}-\wurzel{2}*i}{2})^{148}[/mm]
>  


Berechne von den in den Klammern
stehenden komplexen Zahlen die []Polarform.

Dann vereinfacht sich die weitere Rechnung.


> an diesem Punkt komm ich dann nicht mehr weiter - könnt
> ihr mir vielleicht weiter helfen und habt einen Tipp für
> mich? bzw. ist mein bisheriger Ansatz richtig?
>  
> Vielen Dank schon einmal :)
>  
> Liebe Grüße
>  Martina
>  
> Ich habe diese Frage in keinem Forum auf anderen
> Internetseiten gestellt.


Gruss
MathePower

Bezug
                
Bezug
Komplexe Zahlen: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 17:07 So 15.07.2012
Autor: tiiinChen

Vielen lieben Dank.

Eigentlich hätt ich ja darauf auch selber kommen können, aber die großen Exponenten haben mich irre gemacht, da wir keinen Taschenrechner benutzen dürfen, aber vereinfacht sich ja alles - manchmal steh ich echt auf der Leitung ;-)

also, ich hab dann für den Betrag r = [mm] \wurzel{a^2+b^2} [/mm]
r = 1

und für den winkel  tan=45°

Der Rest - also in Polarform aufschreiben - ist ja dann nicht mehr schwer. Super, dankeschön :)

Bezug
        
Bezug
Komplexe Zahlen: Antwort
Status: (Antwort) fertig Status 
Datum: 08:48 Mo 16.07.2012
Autor: fred97


> [mm](\bruch{1}{\wurzel{2}}+\bruch{i}{\wurzel{2}})^{144}[/mm] *
> [mm](\bruch{1}{2}*\wurzel{2}-\bruch{1}{2}*\wurzel{2}*i)^{148}[/mm]
>  Hallo zusammen,
>  
> Ich habe ein Problem bei der genannten Aufgabe, weiß nicht
> mehr wie ich weiter rechnen muss. Hier erst einmal mein
> Ansatz:
>  
> [mm](\bruch{1+i}{\wurzel{2}})^{144}*(\bruch{\wurzel{2}-\wurzel{2}*i}{2})^{148}[/mm]
>
> =
> [mm](\bruch{(1+i)*\wurzel{2}}{\wurzel{2}*\wurzel{2}})^{144}*(\bruch{\wurzel{2}-\wurzel{2}*i}{2})^{148}[/mm]
>
> =
> [mm](\bruch{\wurzel{2}+\wurzel{2}*i}{2})^{144}*(\bruch{\wurzel{2}-\wurzel{2}*i}{2})^{148}[/mm]
>  
> an diesem Punkt komm ich dann nicht mehr weiter - könnt
> ihr mir vielleicht weiter helfen und habt einen Tipp für
> mich? bzw. ist mein bisheriger Ansatz richtig?
>  
> Vielen Dank schon einmal :)

Berechne mal

             [mm] (\bruch{1}{\wurzel{2}}+\bruch{i}{\wurzel{2}})*(\bruch{1}{2}*\wurzel{2}-\bruch{1}{2}*\wurzel{2}*i) [/mm]

(ganz ohne Polarform). Da kommt was ganz einfaches raus.

Danach siehst Du dann, dass Du nur noch

                  [mm] (\bruch{1}{2}*\wurzel{2}-\bruch{1}{2}*\wurzel{2}*i)^4 [/mm]

berechnen mußt. Das geht (ebenfalls ohne Polarform) sehr einfach, wenn Du Dir mal [mm] (1-i)^2 [/mm] anschaust.

FRED

>  
> Liebe Grüße
>  Martina
>  
> Ich habe diese Frage in keinem Forum auf anderen
> Internetseiten gestellt.


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Analysis-Komplexe Zahlen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorkurse.de
[ Startseite | Mitglieder | Teams | Forum | Wissen | Kurse | Impressum ]