www.vorkurse.de
Ein Projekt von vorhilfe.de
Die Online-Kurse der Vorhilfe

E-Learning leicht gemacht.
Hallo Gast!einloggen | registrieren ]
Startseite · Mitglieder · Teams · Forum · Wissen · Kurse · Impressum
Forenbaum
^ Forenbaum
Status Mathe-Vorkurse
  Status Organisatorisches
  Status Schule
    Status Wiederholung Algebra
    Status Einführung Analysis
    Status Einführung Analytisc
    Status VK 21: Mathematik 6.
    Status VK 37: Kurvendiskussionen
    Status VK Abivorbereitungen
  Status Universität
    Status Lerngruppe LinAlg
    Status VK 13 Analysis I FH
    Status Algebra 2006
    Status VK 22: Algebra 2007
    Status GruMiHH 06
    Status VK 58: Algebra 1
    Status VK 59: Lineare Algebra
    Status VK 60: Analysis
    Status Wahrscheinlichkeitst

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Uni-Analysis" - Komplexe Zahlen
Komplexe Zahlen < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Analysis"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Komplexe Zahlen: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 18:13 Mo 19.04.2004
Autor: David_Lynch

Hallo!
Ich bin seit kurzem Student und muss mich infolge dessen nun mit der Analysis herumschlagen ;).
Nun habe ich ein Problem mit folgender Aufgabe aus meinem Skriptum:

Es sei [mm] 0\not=a\in \IC. [/mm] Bestimmen sie alle [mm] 0\not=b\in\IC [/mm] mit Betrag von a+b = Betrag von a + Betrag von b (denkt man sich die Betragsstriche als eckige Klammer sieht das also so aus: [a+b]=[a]+[b])

Sieht eigentlich ganz einfach aus, aber da ich null Erfahrung im Umgang mit komplexen Zahlen hab (vor einem Monat kannte ich den Begriff noch nicht mal) komme ich da nicht mit zu Rande. Es wäre nett wenn ihr mir da helfen könntet,
Gruß David_Lynch



        
Bezug
Komplexe Zahlen: (verbessert, sorry)
Status: (Antwort) fertig Status 
Datum: 20:55 Mo 19.04.2004
Autor: Stefan

Hallo David,

aus

[mm]|a+b|^2 = (a+b) \cdot \overline{(a+b)} = a\bar{a} + a\bar{b} + b\bar{a} + b\bar{b} = |a|^2 + 2Re(a\bar{b}) + |b|^2[/mm]

folgt:

[mm]|a+b| = |a| + |b| \Leftrightarrow Re(a\bar{b})=|a|\cdot |b|[/mm].

Nun gilt aber:

[mm]Re(a\bar{b}) = |a|\cdot |b| \cdot cos(Arg(a)-Arg(b))[/mm]

und daher:

[mm]Re(a\bar{b}) = |a|\cdot |b| \Leftrightarrow Arg(a) = Arg(b)[/mm].

Also: Es gilt [mm]|a+b|=|a|+|b|[/mm] genau dann, wenn [mm]a=tb[/mm] mit einem [mm]t \ge 0[/mm].

Wenn du Fragen dazu hast, melde dich bitte wieder.

Liebe Grüße
Stefan



Bezug
                
Bezug
Komplexe Zahlen: (verbessert, sorry)
Status: (Frage) beantwortet Status 
Datum: 16:41 Di 20.04.2004
Autor: David_Lynch

Vielen Dank erstmal!
Eine Frage habe ich aber tatsächlich noch:
Was genau bedeutet dieses Arg(a), bzw Arg(b)?


Bezug
                        
Bezug
Komplexe Zahlen: (verbessert, sorry)
Status: (Antwort) fertig Status 
Datum: 17:43 Di 20.04.2004
Autor: Stefan

Hallo David,

mit [mm]Arg(z)[/mm] meine ich den (auf die negative reelle Achse einseitig fortgesetzten) Hauptzweig des Argumentes einer komplexen Zahl, also denjenigen Winkel [mm]Arg(z) \in (-\pi,+\pi][/mm], für den (in Polarkoordinaten)

[mm] z = |z|\cdot e^{i\cdot Arg(z)}[/mm]

gilt. Man kann [mm]Arg(z)[/mm] wie folgt angeben:

Falls [mm]Re(z)=0[/mm] ist, setzt man:

[mm]Arg(z) = \frac{\pi}{2}[/mm],

falls [mm]Im(z)>0[/mm] ist,

und:

[mm]Arg(z) = - \frac{\pi}{2}[/mm],

falls [mm]Im(z)<0[/mm] ist.

Falls [mm]Re(z)>0[/mm] gilt, setzt man:

[mm]Arg(z) = \arctan\left(\frac{Im(z)}{Re(z)}\right)[/mm].

Falls [mm]Re(z)<0[/mm] gilt, setzt man:

[mm]Arg(z) = \arctan\left(\frac{Im(z)}{Re(z)}\right) + \pi[/mm],

falls [mm]Im(z)>0[/mm] ist,

und:

[mm]Arg(z) = \arctan\left(\frac{Im(z)}{Re(z)}\right) - \pi[/mm],

falls [mm]Im(z)<0[/mm] ist.

Für [mm]Im(z)=0[/mm] setzt man [mm]Arg(z)=0[/mm], falls [mm]Re(z)\ge 0[/mm] ist und [mm]Arg(z)=\pi[/mm], falls [mm]Re(z)<0[/mm].

Anschaulich ist also [mm]Arg(z)[/mm] der Winkel im Bereich [mm](-\pi,\pi][/mm], den [mm]z[/mm], als Vektor aufgefasst, mit der positiven reellen Achse einnimmt.

Viele Grüße
Stefan

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Analysis"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorkurse.de
[ Startseite | Mitglieder | Teams | Forum | Wissen | Kurse | Impressum ]