www.vorkurse.de
Ein Projekt von vorhilfe.de
Die Online-Kurse der Vorhilfe

E-Learning leicht gemacht.
Hallo Gast!einloggen | registrieren ]
Startseite · Mitglieder · Teams · Forum · Wissen · Kurse · Impressum
Forenbaum
^ Forenbaum
Status Mathe-Vorkurse
  Status Organisatorisches
  Status Schule
    Status Wiederholung Algebra
    Status Einführung Analysis
    Status Einführung Analytisc
    Status VK 21: Mathematik 6.
    Status VK 37: Kurvendiskussionen
    Status VK Abivorbereitungen
  Status Universität
    Status Lerngruppe LinAlg
    Status VK 13 Analysis I FH
    Status Algebra 2006
    Status VK 22: Algebra 2007
    Status GruMiHH 06
    Status VK 58: Algebra 1
    Status VK 59: Lineare Algebra
    Status VK 60: Analysis
    Status Wahrscheinlichkeitst

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Uni-Komplexe Analysis" - Komplexe Zahlen
Komplexe Zahlen < komplex < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Komplexe Analysis"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Komplexe Zahlen: Lösung für Hausaufgabe gesucht
Status: (Frage) beantwortet Status 
Datum: 20:47 So 05.12.2004
Autor: Limeswissengeg0

Also: Wir haben folgende Aufgabe gestellt bekommen und ich weiss nicht, wie ich die komplexen Zahlen beschreiben soll. Etwa in der Form z=a+ib oder wie? Es sollen doch aber eine bestimmte Anzahl von zahlen rauskommen. Kann mir bitte jemand diese Aufgabe lösen? Am besten mit Erklärung. Das ganze hat bis mittwoch abend Zeit. Hier nun die Aufgabe:


Determine all complex numbers z which satisfy:

(a) | z − 1 | < | z + 1 |

(b) | z − [mm] z_{0} [/mm] | = r with fixed [mm] z_{0} \in \IC [/mm] and r > 0;

(c) Re [mm] \bruch{1}{z} [/mm] = [mm] \bruch{1}{2} [/mm]

(d) |z-2|+|z+2|=10

(e) [mm] z^{2}= \bruch{1+i}{1-i} [/mm]


Vielen dank schonmal!!!!!!!
Der Limes

        
Bezug
Komplexe Zahlen: Eigene Ideen?
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 01:18 Mo 06.12.2004
Autor: Loddar

Hallo LimesWissengeg0,

Du hast doch mit Sicherheit bei diesen 5 Aufgaben irgendwelche eigene Lösungsansätze oder Ideen.

Bitte mach' diese doch hier öffentlich, damit wir sehen können, wo genau es hängt ...

Bezug
        
Bezug
Komplexe Zahlen: a) + e)
Status: (Antwort) fertig Status 
Datum: 14:58 Mo 06.12.2004
Autor: Julius

Hallo!

Ich rechne dir mal die erste Teilaufgabe vor, damit du siehst, wie man so etwas macht:

[mm] $\{z \in \IC\, :\, |z-1| < |z+1|\}$ [/mm]

$= [mm] \{z \in \IC\, : \, |z-1|^2 < |z+1|^2\}$ [/mm]

$= [mm] \{z \in \IC\, : \, |z|^2 - 2Re(z) + 1 < |z|^2 + 2Re(z) + 1\}$ [/mm]

[mm] $=\{z \in \IC\, :\, Re(z)>0\}$. [/mm]

Okay, und hier die e) noch:

[mm] $\{z \in \IC\, : \, z^2 = \frac{1+i}{1-i}\}$ [/mm]

$= [mm] \{z \in \IC\, : \, z^2 = \frac{(1+i)^2}{(1-i)(1+i)}\}$ [/mm]

$= [mm] \{z \in \IC\, : \, z^2 = \frac{2i}{2}\}$ [/mm]

$= [mm] \{z \in \IC\, : \, z^2 = i\}$ [/mm]

[mm] $=\{z \in \IC\, : \, z^2 = e^{i\frac{\pi}{2}}\}$ [/mm]

[mm] $=\{ e^{i\frac{\pi}{4}}, - e^{i\frac{\pi}{4}}\}$ [/mm]

[mm] $=\{ \pm \frac{1}{\sqrt{2}}(1+i)\}$. [/mm]

So, und bei den anderen Teilaufgaben wollen wir jetzt wirklich erst einmal eigene Ansätze und Ideen von dir sehen.

Viele Grüße
Julius

Bezug
                
Bezug
Komplexe Zahlen: dumme Frage
Status: (Frage) beantwortet Status 
Datum: 17:25 Mi 08.12.2004
Autor: maria

Irgendwie versteh ich nicht ganz warum  [mm] z^{2}=Re(z) [/mm] ist!!!

Bezug
                        
Bezug
Komplexe Zahlen: Antwort
Status: (Antwort) fertig Status 
Datum: 17:36 Mi 08.12.2004
Autor: Julius

Hallo Maria!

Wer behauptet das denn? Und wo?

Viele Grüße
Julius

Bezug
                                
Bezug
Komplexe Zahlen: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 17:48 Mi 08.12.2004
Autor: maria

Tschuldigung, ich mein natürlich, wenn du  [mm] |z-1|^{2} [/mm] auflöst, wie kommst du auf das Re(z). Ich würde das so auflösen: [mm] |z|^{2}-2z+1 [/mm]

Bezug
                                        
Bezug
Komplexe Zahlen: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 18:08 Mi 08.12.2004
Autor: Julius

Hallo Maria!

> Tschuldigung, ich mein natürlich, wenn du  [mm]|z-1|^{2}[/mm]
> auflöst, wie kommst du auf das Re(z). Ich würde das so
> auflösen: [mm]|z|^{2}-2z+1[/mm]

Das wäre aber falsch, wenn du das so machen würdest. ;-)

Richtig geht es so:

[mm] $|z-1|^2 [/mm] = (z-1) [mm] \cdot \overline{(z-1)} [/mm] = (z-1) [mm] \cdot (\bar{z}-1) [/mm] = [mm] z\bar{z} [/mm] - z - [mm] \bar{z} [/mm] + 1 = [mm] |z|^2 [/mm] - 2Re(z) + 1$

wegen

$Re(z) = [mm] \frac{1}{2} \cdot [/mm] (z + [mm] \bar{z})$. [/mm]

Verstanden?

Liebe Grüße
Julius


Bezug
        
Bezug
Komplexe Zahlen: d Idee
Status: (Antwort) fertig Status 
Datum: 15:34 Di 07.12.2004
Autor: Antiprofi

Hallo!
Bei der Aufgabe d) kommen wir zum Schluss durch Betragauflösen und Umformen auf die Gleichung:

[mm] a^2+b^2=46. [/mm]

Wir dachten man kann das als [mm] (a-0)^2+(b-0)^2=\wurzel46^2 [/mm] deuten und dies wäre ja eine Kreisgleichung mit dem Mittelpunkt M(0|0) und [mm] r=\wurzel46. [/mm]
OK. Das hier war wohl Quark. Weitere Idee siehe untem im Strang.

Bezug
                
Bezug
Komplexe Zahlen: Frage
Status: (Frage) beantwortet Status 
Datum: 16:13 Mi 08.12.2004
Autor: sunshinenight

Wie seid ihr denn darauf gekommen?
Habt ihr die gesamte linke Seite quadriert oder erst umgeformt?

mfg

Bezug
                        
Bezug
Komplexe Zahlen: Antwort
Status: (Antwort) fertig Status 
Datum: 18:05 Mi 08.12.2004
Autor: Antiprofi

Hallo!
Wir haben gemerkt das diese Lösung nicht stimmt. Man muss irgendwie das so umformen, dass zum Schluss eine Ellipsengleichung herauskommt. Bekommen aber leider die Klammer nicht aufgelöst.
D.h. [mm] \wurzel{(a+b-2)^2}+\wurzel{(a+b+2)^2}=10 [/mm]
...
dann [mm] \wurzel{a^2+2ab+b^2+4-4a-4b}+\wurzel{a^2+2ab+b^2+4+4a+4b}=10 [/mm]

Wie bekommt an jetzt die Wurzeln weg?

Bezug
                
Bezug
Komplexe Zahlen: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 17:41 Mi 08.12.2004
Autor: maria

Also ich habe die Aufgabe d) analog zur Aufgabe a) gemacht und komme am Ende auf diese Ungleichung  [mm] |z^{2}|=46 [/mm] Hmmm, was jetzt richtig ist, weiß ich auch nicht, aber die Zahl 46 scheint schon irgendwie zu stimmen :-)

Bezug
                        
Bezug
Komplexe Zahlen: zu deiner Lösung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 18:25 Mi 08.12.2004
Autor: Antiprofi

Hallo Maria.
Du hast zum Schluss etwa das Gleiche raus, da |z| = [mm] \wurzel{a^2+b^2} [/mm]

Bezug
        
Bezug
Komplexe Zahlen: b) und c)
Status: (Frage) beantwortet Status 
Datum: 15:55 Mi 08.12.2004
Autor: sunshinenight

Ich finde bei der b einfach keinen geeifneten Ansatz. Zumindest bringt mich nichts weiter.
[mm] |z²|-2Re(zz_{0}) [/mm] +  [mm] |z_{0}|² [/mm] = r² und dann oder muss man das anders machen?

bei c) komme ich für z auf 2 ist das richtig?

mfg

Bezug
                
Bezug
Komplexe Zahlen: Antwort
Status: (Antwort) fertig Status 
Datum: 17:54 Mi 08.12.2004
Autor: Antiprofi

Hallo Conny!
Zu b)
[mm] |z-z_0|=r [/mm]
[mm] |(a+bi)-(a_0+b_0i)|=r [/mm]
[mm] \wurzel{(a-a_0)^2+(b-b_0)^2}=r [/mm]
[mm] (a-a_0)^2+(b-b_0)^2=r^2 [/mm] ist eine Kreisgleichung mit [mm] M(a_0|b_0) [/mm] und Radius r.

zu c)
[mm] Re(\br{1}{z}) [/mm] = [mm] \br{a}{a^2b^2} [/mm] d.h. [mm] \br{1}{2}=\br{a}{a^2b^2} [/mm]
...
zum Schluss [mm] 1=(a-1)^2+(b-0)^2 [/mm] Kreisgleichung mit M(1|0) und r=1.

Bezug
                        
Bezug
Komplexe Zahlen: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 17:17 Sa 11.12.2004
Autor: Julius

Hallo Antiprofi!

>  Zu b)
> [mm]|z-z_0|=r [/mm]
>  [mm]|(a+bi)-(a_0+b_0i)|=r [/mm]
>  [mm]\wurzel{(a-a_0)^2+(b-b_0)^2}=r [/mm]
>  [mm](a-a_0)^2+(b-b_0)^2=r^2[/mm] ist eine Kreisgleichung mit
> [mm]M(a_0|b_0)[/mm] und Radius r.

[ok]
  

> zu c)
>  [mm]Re(\br{1}{z})[/mm] = [mm]\br{a}{a^2b^2}[/mm] d.h.
> [mm]\br{1}{2}=\br{a}{a^2b^2} [/mm]

Hier hast du dich verschrieben. Statt [mm] $a^2b^2$ [/mm] muss es [mm] $a^2 [/mm] + [mm] b^2$ [/mm] heißen. Das Endergebnis stimmt aber. :-)

Viele Grüße
Julius


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Komplexe Analysis"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorkurse.de
[ Startseite | Mitglieder | Teams | Forum | Wissen | Kurse | Impressum ]