www.vorkurse.de
Ein Projekt von vorhilfe.de
Die Online-Kurse der Vorhilfe

E-Learning leicht gemacht.
Hallo Gast!einloggen | registrieren ]
Startseite · Mitglieder · Teams · Forum · Wissen · Kurse · Impressum
Forenbaum
^ Forenbaum
Status Mathe-Vorkurse
  Status Organisatorisches
  Status Schule
    Status Wiederholung Algebra
    Status Einführung Analysis
    Status Einführung Analytisc
    Status VK 21: Mathematik 6.
    Status VK 37: Kurvendiskussionen
    Status VK Abivorbereitungen
  Status Universität
    Status Lerngruppe LinAlg
    Status VK 13 Analysis I FH
    Status Algebra 2006
    Status VK 22: Algebra 2007
    Status GruMiHH 06
    Status VK 58: Algebra 1
    Status VK 59: Lineare Algebra
    Status VK 60: Analysis
    Status Wahrscheinlichkeitst

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Uni-Komplexe Analysis" - Komplexe Zahlen
Komplexe Zahlen < komplex < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Komplexe Analysis"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Komplexe Zahlen: wie geht man vor?
Status: (Frage) beantwortet Status 
Datum: 20:46 Di 28.11.2006
Autor: Mankiw

Hallo,
ich habe schon wieder mal ne frage.
Ich soll alle komplexen Zahlen mit a) z²=1, b) z³=1 c) [mm] z^{4}=1 [/mm] in der Form z=a+ib bestimmen.
Leider hab ich keinen Schimmer wie ich da anfangen soll. Kann mir jemand erklären, was ich überhaupt machen soll, bzw. was so richtig gesucht ist?



Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.

        
Bezug
Komplexe Zahlen: Antwort
Status: (Antwort) fertig Status 
Datum: 20:59 Di 28.11.2006
Autor: Brinki

Die Zahlen befinden sich allesamt auf dem Einheitskreis. Nur so kann der Realteil beim Potenzieren 1 werden.

Teile die Kreislinie  in zwei Teile, dann findest du die Zahl die quadriert 1 ergibt. Natürlich gehört auch die Zahl 1 selbst hinzu.

Bei der 4. Potenz Teile den Einheitskreis in vier Teile.

usw.

Grüße
Brinki

Bezug
                
Bezug
Komplexe Zahlen: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 21:01 Di 28.11.2006
Autor: Mankiw

wat? wasn fürn Einheitskreis? Über sowas haben wir in der Vorlesung gar nicht gesprochen...

Bezug
                        
Bezug
Komplexe Zahlen: Moivre-Formel
Status: (Antwort) fertig Status 
Datum: 23:39 Di 28.11.2006
Autor: Loddar

Hallo Mankiw!


Alternativ kannst Du auch die []Moivre-Formel für die Berechnung der Wurzeln anwenden:

[mm] $\wurzel[n]{z} [/mm] \ = \ [mm] \wurzel[n]{r}*\left[\cos\left(\bruch{\varphi+k*2\pi}{n}\right)+i*\sin\left(\bruch{\varphi+k*2\pi}{n}\right)\right]$ [/mm]   mit   $k \ =\ 0...(n-1)$


Gruß
Loddar


Bezug
                                
Bezug
Komplexe Zahlen: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 13:56 Mi 29.11.2006
Autor: Mankiw

leider, haben wir diese Formel auch noch nicht eingeführt, und darf deswegen nicht verwendet werden :-(

Bezug
                                        
Bezug
Komplexe Zahlen: Antwort
Status: (Antwort) fertig Status 
Datum: 14:09 Mi 29.11.2006
Autor: Herby

Hallo Mankiw,


aber das Potenzieren hattet ihr doch sicher und die Identität:


[mm] r*e^{i\varphi}=r*(cos(\varphi)+sin(\varphi)) [/mm]


müsstet ihr auch schon durchgesprochen haben, oder nicht [keineahnung]

Außerdem ist ebenfalls sicher bekannt, dass z.B. [mm] cos(\varphi)=cos(\varphi+2k\pi) [/mm] ist; für alle [mm] k\in\IN [/mm]



Die Formel von Moivre ergibt daraus, und kann daher verwendet werden - vielleicht könntest du ja mal dein Skript reinstellen



Liebe Grüße
Herby

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Komplexe Analysis"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorkurse.de
[ Startseite | Mitglieder | Teams | Forum | Wissen | Kurse | Impressum ]