www.vorkurse.de
Ein Projekt von vorhilfe.de
Die Online-Kurse der Vorhilfe

E-Learning leicht gemacht.
Hallo Gast!einloggen | registrieren ]
Startseite · Mitglieder · Teams · Forum · Wissen · Kurse · Impressum
Forenbaum
^ Forenbaum
Status Mathe-Vorkurse
  Status Organisatorisches
  Status Schule
    Status Wiederholung Algebra
    Status Einführung Analysis
    Status Einführung Analytisc
    Status VK 21: Mathematik 6.
    Status VK 37: Kurvendiskussionen
    Status VK Abivorbereitungen
  Status Universität
    Status Lerngruppe LinAlg
    Status VK 13 Analysis I FH
    Status Algebra 2006
    Status VK 22: Algebra 2007
    Status GruMiHH 06
    Status VK 58: Algebra 1
    Status VK 59: Lineare Algebra
    Status VK 60: Analysis
    Status Wahrscheinlichkeitst

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Elektrotechnik" - Komplexe Widerstände
Komplexe Widerstände < Elektrotechnik < Ingenieurwiss. < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Elektrotechnik"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Komplexe Widerstände: Frage (reagiert)
Status: (Frage) reagiert/warte auf Reaktion Status 
Datum: 20:03 Mi 11.01.2006
Autor: papillon

Aufgabe
Gegeben sei eine schaltung, bei der ein Parallelschwingkreis aus Spule und Kondensator in Reihe mit einem ohmschen Widerstand besteht.
Nun wird am Schwingkreis die Spannung abgegriffen.

Berechnen sie den betrag und das argument der Übertragsfunktion. Skizzieren sie das Bodediagramm.

Hallo!

Ich verzweifle bei dieser Aufgabe: Bisher bin ich so weit:

Widerstand der Spule: iwL

Widerstand des Kondensators:  [mm] \bruch{1}{iwC} [/mm]

Ersatzwiderstand des Schwingkreises (Spule und Kondensator parallel):  [mm] \bruch{iwL}{1-w^{2}LC} [/mm]

Gesamtwiderstand der Schaltung (Schwingkreis mit Ohmschem Widerstand in Reihe):
[mm] \bruch{iwL+R-Rw^{2}LC}{1-w^{2}LC} [/mm]

Die Übertragsfunktion: G(w) = [mm] \bruch{Ersatzwiderstand}{Gesamtwiderstand} [/mm]

Die charakteristische Frequenz: [mm] w_{0}= \bruch{1}{\wurzel{LC}} [/mm]



Wie komme ich an den Betrag und das Argument der Betragsfunktion?
Wie sieht das Bodediagramm aus?


Vielen Dank schon mal!

        
Bezug
Komplexe Widerstände: (vage) Ansätze
Status: (Antwort) fertig Status 
Datum: 09:55 Do 12.01.2006
Autor: Loddar

Eingabefehler: "\left" und "\right" müssen immer paarweise auftreten, es wurde aber ein Teil ohne Entsprechung gefunden (siehe rote Markierung)
Eingabefehler: "\left" und "\right" müssen immer paarweise auftreten, es wurde aber ein Teil ohne Entsprechung gefunden (siehe rote Markierung)

Guten Morgen Papillon!


Mal wieder vorneweg: ich habe überhaupt(!) keine Ahnung von E-Technik (was mich dennoch nicht abhält, zu antworten ;-) ) .

Von daher gilt hier absoluter
Haftungsausschluss!!


Wenn ich Dich richtig verstanden habe, musst Du Betrag und Argument dieser Funktion bestimmen:


$G(\omega) \ = \ \bruch{\text{Ersatzwiderstand}}{\text{Gesamtwiderstand}} \ = \ \bruch{\bruch{i*\omega*L}{1-\omega^2*L*C}}{\bruch{i*\omega*L+R-R*\omega^2*L*C}{1-\omega^2*L*C}}$


Erweitern mit $\left(1-\omega^2*L*C\right)$ ergibt:

$... \ = \ \bruch{i*\omega*L}{i*\omega*L+R-R*\omega^2*L*C} \ = \ \bruch{i}{R*\left(\bruch{1}{L}-\omega*C\right)+i}$


Nun erweitern wir diesen Bruch mit dem Konjugierten des Nenners $R*\left(\bruch{1}{L}-\omega*C\right) \ \red{-} \ i$ :


$G(\omega) \ = \ \bruch{i*\left[R*\left(\bruch{1}{L}-\omega*C\right) - i\right]}{R^2*\left(\bruch{1}{L}-\omega*C\right)^2 - i^2} \ = \ \bruch{R*\left(\bruch{1}{L}-\omega*C\right)*i - i^2}{R^2*\left(\bruch{1}{L}-\omega*C\right)^2 - i^2} \ = \ \bruch{R*\left(\bruch{1}{L}-\omega*C\right)*i +1}{R^2*\left(\bruch{1}{L}-\omega*C\right)^2 +1}$


Nun können wir diesen Bruch zerlegen und erhalten sowohl den Realteil als auch Imaginärteil dieser Funktion:

$G(\omega) \ = \ \underbrace{\bruch{1}{R^2*\left(\bruch{1}{L}-\omega*C\right)^2 +1}}_{\text{Re}} \ \ + \ \ i*\underbrace{\bruch{R*\left(\bruch{1}{L}-\omega*C\left)}{R^2*\left(\bruch{1}{L}-\omega*C\right)^2 +1}}_{\text{Im}}$

Kannst Du nun Betrag und Argument ermitteln?


Gruß
Loddar


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Elektrotechnik"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorkurse.de
[ Startseite | Mitglieder | Teams | Forum | Wissen | Kurse | Impressum ]