www.vorkurse.de
Ein Projekt von vorhilfe.de
Die Online-Kurse der Vorhilfe

E-Learning leicht gemacht.
Hallo Gast!einloggen | registrieren ]
Startseite · Mitglieder · Teams · Forum · Wissen · Kurse · Impressum
Forenbaum
^ Forenbaum
Status Mathe-Vorkurse
  Status Organisatorisches
  Status Schule
    Status Wiederholung Algebra
    Status Einführung Analysis
    Status Einführung Analytisc
    Status VK 21: Mathematik 6.
    Status VK 37: Kurvendiskussionen
    Status VK Abivorbereitungen
  Status Universität
    Status Lerngruppe LinAlg
    Status VK 13 Analysis I FH
    Status Algebra 2006
    Status VK 22: Algebra 2007
    Status GruMiHH 06
    Status VK 58: Algebra 1
    Status VK 59: Lineare Algebra
    Status VK 60: Analysis
    Status Wahrscheinlichkeitst

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Algebra" - Komplexe Lösungen finden
Komplexe Lösungen finden < Algebra < Algebra+Zahlentheo. < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Algebra"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Komplexe Lösungen finden: Prüfungsaufgabe
Status: (Frage) beantwortet Status 
Datum: 18:44 Di 14.03.2006
Autor: Esperanza

Aufgabe
Bestimmen Sie alle komplexen Lösungen der Gleichung [mm] x^3+27i=0 [/mm]

Hallo.

Ich übe gerade für eine Matheklausur und habe eine Aufgabe vor mir, mit der ich nicht zurecht komme.

Die Lösung dazu lautet:

[mm] z_{j}=3(cos(\pi/2+(j-1)2\pi/3)+isin(\pi/2+(j-1)2\pi/3)) [/mm] j=1,2,3

Explizit:
[mm] z1=3(cos(\pi/2)+isin(\pi/2)) [/mm] =3i
[mm] z2=3(cos(7\pi/6)+isin(7\pi/6)) =3(-\wurzel{3/2}-i/2) \approx-2,5981-1,5i [/mm]
[mm] z3=3(cos(11\pi/6)+isin(11\pi/6)) =3(\wurzel{3/2}-i/2) \approx-2,5981-1,5i [/mm]

Ich habe leider überhaupt keinen Schimmer wie ich dort hin gelange. Mich irritiert das [mm] x^3...wenn [/mm] es [mm] x^2 [/mm] wäre wüsste ich wie es geht.

Kann mir jemand erklären wie ich darauf komme? Und was bedeuten die j=1,2,3? (Wieso 3 Werte?)

Esperanza

        
Bezug
Komplexe Lösungen finden: Antwort
Status: (Antwort) fertig Status 
Datum: 19:37 Di 14.03.2006
Autor: dormant

Hi!

> [mm]z_{j}=3(cos(\pi/2+(j-1)2\pi/3)+isin(\pi/2+(j-1)2\pi/3))[/mm]
> j=1,2,3

Das ist ne geile Lösung! Sag mal deinem Prof nen schönen Gruß von mir.

> Ich habe leider überhaupt keinen Schimmer wie ich dort hin
> gelange. Mich irritiert das [mm]x^3...wenn[/mm] es [mm]x^2[/mm] wäre wüsste
> ich wie es geht.

Die Vorgehensweise ist bei [mm] x^{3} [/mm] und bei [mm] x^{2} [/mm] eigentlich gleich. Man soll [mm] x\in\IC [/mm] als x:=a+ib mit a, b [mm] \in\IR [/mm] darstellen und dann a und b bestimmen. In deinem Fall würde das bedeuten:

[mm] (a+ib)^{3}+i27=0 \gdw [/mm]
[mm] \gdw a^{3}-3ab^{2}+i(3a^{2}b-b^3+27)=0. [/mm]

Dann sollst du das reelle System:

[mm] a^{3}-3ab^{2}=0 [/mm] und
[mm] 3a^{2}b-b^3+27=0 [/mm]

lösen.


> Kann mir jemand erklären wie ich darauf komme? Und was
> bedeuten die j=1,2,3? (Wieso 3 Werte?)

Drei Werte, weil die Gleichung 3 Lösungen hat anscheinend. Jede Lösung erhälts du indem du für j 1, 2 oder 3 in die allgemeine Lösung einsetzst.

Gruß,

dormant

Bezug
        
Bezug
Komplexe Lösungen finden: allgemeine Lösung
Status: (Antwort) fertig Status 
Datum: 20:03 Di 14.03.2006
Autor: Mr.Peanut

[mm] $z^n=a$ [/mm]

hatt immer Volgende Lösung:
$ [mm] z_{k}= \root [/mm] n [mm] \of [/mm] {|a|}   [mm] \left(cos(\bruch{\varphi+2\pi k}{n})+i sin(\bruch{\varphi+2\pi k}{n})\right) [/mm] $

oder
$ [mm] z_{k}= \root [/mm] n [mm] \of [/mm] {|a|} [mm] e^{i({\bruch{\varphi+2\pi k}{n}})} [/mm]  $

k=0,1,..,n-1


so ich hoffe war nicht ganz an der sache vorbei.

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Algebra"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorkurse.de
[ Startseite | Mitglieder | Teams | Forum | Wissen | Kurse | Impressum ]