www.vorkurse.de
Ein Projekt von vorhilfe.de
Die Online-Kurse der Vorhilfe

E-Learning leicht gemacht.
Hallo Gast!einloggen | registrieren ]
Startseite · Mitglieder · Teams · Forum · Wissen · Kurse · Impressum
Forenbaum
^ Forenbaum
Status Mathe-Vorkurse
  Status Organisatorisches
  Status Schule
    Status Wiederholung Algebra
    Status Einführung Analysis
    Status Einführung Analytisc
    Status VK 21: Mathematik 6.
    Status VK 37: Kurvendiskussionen
    Status VK Abivorbereitungen
  Status Universität
    Status Lerngruppe LinAlg
    Status VK 13 Analysis I FH
    Status Algebra 2006
    Status VK 22: Algebra 2007
    Status GruMiHH 06
    Status VK 58: Algebra 1
    Status VK 59: Lineare Algebra
    Status VK 60: Analysis
    Status Wahrscheinlichkeitst

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Lineare Algebra Sonstiges" - Komplexe Gleichungssystem
Komplexe Gleichungssystem < Sonstiges < Lineare Algebra < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Algebra Sonstiges"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Komplexe Gleichungssystem: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 01:31 Mi 28.12.2011
Autor: Lu-

Aufgabe
Bestimme alle komplexen Lösungen des Glgs.

[mm] z_1 [/mm] +i [mm] z_2 [/mm] +(1 + i) [mm] z_3 [/mm] = i − 1
(2 + i) [mm] z_1 [/mm] +(−3 + i) [mm] z_2 +2iz_3 [/mm] = −5


Gauß
[mm] z_1 +iz_2 [/mm] +(1 + i) [mm] z_3 [/mm] = i − 1
(2+i) [mm] z_2 [/mm] + (1+i)  [mm] z_3 [/mm] = 2+i

[mm] L_0 [/mm] (Kern) bestimmen
[mm] z_1 [/mm] +i [mm] z_2 [/mm] + (1 + i)  [mm] z_3 [/mm] = 0
[mm] (2+i)z_2 [/mm] + (1+i) [mm] z_3 [/mm] = 0
Setze [mm] z_2 [/mm] = t und rechne aus
[mm] L_0 [/mm] = [mm] \{\vektor{i+4 \\ 1 \\ \frac{-3+i}{2}} t | t \in \IC \} [/mm]

[mm] L_y [/mm] = [mm] L_0 [/mm] + spezielle Lösung

Setzte [mm] z_3 [/mm] =0
[mm] z_1 [/mm] +i [mm] z_2 [/mm]  = i − 1
(2+i) [mm] z_2 [/mm]  = 2+i
-> [mm] z_2 [/mm] = 1
-> [mm] z_1 [/mm] = -1

Wie gebe ich nun die Lösung an ???
Ganz liebe Grüße

        
Bezug
Komplexe Gleichungssystem: Antwort
Status: (Antwort) fertig Status 
Datum: 05:59 Mi 28.12.2011
Autor: Al-Chwarizmi


> Bestimme alle komplexen Lösungen des Glgs.
>  
> [mm]z_1[/mm] +i [mm]z_2[/mm] +(1 + i) [mm]z_3[/mm] = i − 1
>  (2 + i) [mm]z_1[/mm] +(−3 + i) [mm]z_2 +2iz_3[/mm] = −5
>  
> Gauß
>  [mm]z_1 +iz_2[/mm] +(1 + i) [mm]z_3[/mm] = i − 1
>  (2+i) [mm]z_2[/mm] + (1+i)  [mm]z_3[/mm] = 2+i
>  
> [mm]L_0[/mm] (Kern) bestimmen
>  [mm]z_1[/mm] +i [mm]z_2[/mm] + (1 + i)  [mm]z_3[/mm] = 0
>  [mm](2+i)z_2[/mm] + (1+i) [mm]z_3[/mm] = 0
>  Setze [mm]z_2[/mm] = t und rechne aus
>  [mm]L_0[/mm] = [mm]\{\vektor{i+4 \\ 1 \\ \frac{-3+i}{2}} t | t \in \IC \}[/mm]
>  
> [mm]L_y[/mm] = [mm]L_0[/mm] + spezielle Lösung
>  
> Setzte [mm]z_3[/mm] =0
>  [mm]z_1[/mm] +i [mm]z_2[/mm]  = i − 1
>  (2+i) [mm]z_2[/mm]  = 2+i
>  -> [mm]z_2[/mm] = 1

>  -> [mm]z_1[/mm] = -1

>  
> Wie gebe ich nun die Lösung an ???
>  Ganz liebe Grüße


Hallo Lu- ,

es scheint, dass in deiner Lösung die erste
Komponente [mm] z_1 [/mm] der homogenen Lösung falsch ist.
Nachher ist es so, wie du schon beschrieben
hast:

   $ [mm] L_y [/mm] $ = $ [mm] L_0 [/mm] $ + spezielle Lösung

LG   Al-Chw.

Bezug
                
Bezug
Komplexe Gleichungssystem: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 13:47 Mi 28.12.2011
Autor: Lu-

$ [mm] L_y [/mm] $ = $ [mm] L_0 [/mm] $ + spezielle Lösung
[mm] L_y [/mm] =  [mm] \vektor{2 \\ 1 \\ \frac{-3+i}{2}} [/mm] t + [mm] \vektor{-1 \\ 1 \\ 0} [/mm]
So?
Was ist denn allegeim besser? Die Lösung mittels homogene Lösung und spezielle Lösung zu errechnen oder die einzelnen Komponenten [mm] z_1=..., z_2=...,z_3=... [/mm] zu errechnen mit Variabeln, so dass man eine setzte z.B. [mm] z_3=a+ib. [/mm] In dem Fall wäre die andere Methode mühsamer gewesen.
Wie weiß ich welche WANN besser zu verwenden ist?

Bezug
                        
Bezug
Komplexe Gleichungssystem: Antwort
Status: (Antwort) fertig Status 
Datum: 13:59 Mi 28.12.2011
Autor: Al-Chwarizmi


> [mm]L_y[/mm] = [mm]L_0[/mm] + spezielle Lösung
> [mm]L_y[/mm] =  [mm]\vektor{2 \\ 1 \\ \frac{-3+i}{2}}[/mm] t + [mm]\vektor{-1 \\ 1 \\ 0}[/mm]
>  
> So?

Ja. Ich würde empfehlen, den Vektor  [mm] \vektor{2 \\ 1 \\ \frac{-3+i}{2}} [/mm] noch mit 2 zu
erweitern zu:
          [mm] \vektor{4 \\ 2 \\ -3+i} [/mm]


>  Was ist denn allgemein besser? Die Lösung mittels homogene
> Lösung und spezielle Lösung zu errechnen oder die
> einzelnen Komponenten [mm]z_1=..., z_2=...,z_3=...[/mm] zu errechnen
> mit Variabeln, so dass man eine setzte z.B. [mm]z_3=a+ib.[/mm] In
> dem Fall wäre die andere Methode mühsamer gewesen.
> Wie weiß ich welche WANN besser zu verwenden ist?

Da der Faktor t beliebige komplexe Werte annehmen darf,
ist die Darstellung mit Real- und Imaginärteil wohl eher
ungeeignet bei dieser Sorte von Aufgaben.

LG   Al-Chw.


Bezug
                                
Bezug
Komplexe Gleichungssystem: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 14:32 Mi 28.12.2011
Autor: Lu-

Ich hätte noch eine Frage, aber nicht speziell zu dem Bsp.
Was ist wenn mir als homogene Lösung nur [mm] z_1=z_2=z_3=0 [/mm] rauskommt? Dann wäre die Lösung nur die spezielle Lösung?

Ich habe z.B
[mm] i*z_1 [/mm] + [mm] 2iz_2 [/mm] + (1+i) * [mm] z_3 [/mm] =0
[mm] iz_2 [/mm] + (-1-2i) [mm] z_3 [/mm] =0
(2-3i) [mm] z_3 [/mm] =0
als homogene STuffenform
LG

Bezug
                                        
Bezug
Komplexe Gleichungssystem: Antwort
Status: (Antwort) fertig Status 
Datum: 15:39 Mi 28.12.2011
Autor: MathePower

Hallo Lu-,

> Ich hätte noch eine Frage, aber nicht speziell zu dem
> Bsp.
>  Was ist wenn mir als homogene Lösung nur [mm]z_1=z_2=z_3=0[/mm]
> rauskommt? Dann wäre die Lösung nur die spezielle
> Lösung?
>  


Ja.


> Ich habe z.B
>  [mm]i*z_1[/mm] + [mm]2iz_2[/mm] + (1+i) * [mm]z_3[/mm] =0
>  [mm]iz_2[/mm] + (-1-2i) [mm]z_3[/mm] =0
>  (2-3i) [mm]z_3[/mm] =0
>  als homogene STuffenform
>  LG


Gruss
MathePower

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Algebra Sonstiges"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorkurse.de
[ Startseite | Mitglieder | Teams | Forum | Wissen | Kurse | Impressum ]