Komplexe Analysis - Stetigkeit < komplex < Analysis < Hochschule < Mathe < Vorhilfe
|
Status: |
(Frage) beantwortet | Datum: | 17:31 Mi 28.01.2009 | Autor: | hannaK |
Moin!
Ich versuche gerade mir die [mm] \varepsilon, \delta [/mm] - Definition der Stetigkeit zu veranschaulichen...
Da [mm] z_{0} [/mm] komplex ist muss man diese Zahl ja schon 2-dimensional darstellen. Die [mm] \delta [/mm] Umgebung von [mm] z_{0} [/mm] kann man sich als Kreisscheibe veranschaulichen. Also ist die [mm] \varepsilon [/mm] - Umgebung ja vermutlich auch ein Kreis. Damit ich beides darstellen kann wäre ich ja dann im 3-dimensionalen. Also insgesammt hätte man dann eine Kugel, falls sie "ineinander" liegen, oder, wenn sie sich irgendwo schneiden, eben der Teil, der in beiden Kugeln liegt.
Kann das sein? Oder lieg ich da falsch? Kann man sich das irgendwie anders vorstellen, falls ich falsch liege?
Und wie kann ich mir eine Funktion im koplexen überhaupt vorstellen, wenn doch die Elemente von [mm] \IC [/mm] nicht anordenbar sind...?
*verwirrter blick*
Danke schon mal im Vorraus.
Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.
|
|
|
|
Status: |
(Antwort) fertig | Datum: | 17:53 Mi 28.01.2009 | Autor: | Marcel |
Hallo Hanna,
> Moin!
> Ich versuche gerade mir die [mm]\varepsilon, \delta[/mm] -
> Definition der Stetigkeit zu veranschaulichen...
> Da [mm]z_{0}[/mm] komplex ist muss man diese Zahl ja schon
> 2-dimensional darstellen. Die [mm]\delta[/mm] Umgebung von [mm]z_{0}[/mm]
> kann man sich als Kreisscheibe veranschaulichen. Also ist
> die [mm]\varepsilon[/mm] - Umgebung ja vermutlich auch ein Kreis.
> Damit ich beides darstellen kann wäre ich ja dann im
> 3-dimensionalen. Also insgesammt hätte man dann eine Kugel,
> falls sie "ineinander" liegen, oder, wenn sie sich irgendwo
> schneiden, eben der Teil, der in beiden Kugeln liegt.
> Kann das sein? Oder lieg ich da falsch? Kann man sich das
> irgendwie anders vorstellen, falls ich falsch liege?
ich finde das ganze wenig hilfreich. Ich weiß auch nicht, ob Du eine Funktion [mm] $\IR \to \IC$ [/mm] oder [mm] $\IC \to \IR$ [/mm] meinst (oder eine Funktion [mm] $\IC \to \IC$). [/mm] Viel sinnvoller und wichtiger wäre es imho, Dir die folgende Definition klarzumachen:
Sind [mm] $(X,d),\; [/mm] (Y,e)$ metrische Räume, so ist für $M [mm] \subset X\,,\;N \subset [/mm] Y$ eine Funktion $f: M [mm] \to [/mm] N$ genau dann stetig in [mm] $x_0 \in [/mm] M$, wenn für alle [mm] $\epsilon [/mm] > 0$ ein [mm] $\delta=\delta(\epsilon,x_0) [/mm] > 0$ so existiert, dass gilt:
Für alle $x [mm] \in [/mm] M$ mit [mm] $d(x_0,x) [/mm] < [mm] \delta$ [/mm] gilt [mm] $e(f(x),f(x_0)) [/mm] < [mm] \epsilon\,.$
[/mm]
Oder meinetwegen etwas speziell:
Ist $f$ eine Funktion $M [mm] \to [/mm] N$ mit $M,N [mm] \subset \IC$, [/mm] so ist [mm] $\,f\,$ [/mm] genau dann stetig in [mm] $x_0 \in [/mm] M$, wenn gilt:
Für alle [mm] $\epsilon [/mm] > 0$ existiert ein [mm] $\delta=\delta(\epsilon,x_0) [/mm] > 0$ so, dass gilt:
Für alle $x [mm] \in [/mm] M$ mit [mm] $|x-x_0| [/mm] < [mm] \delta$ [/mm] gilt [mm] $|f(x)-f(x_0)| [/mm] < [mm] \epsilon.$
[/mm]
(Das ist das gleiche wie oben, wobei man hier einfach dann davon ausgeht, dass [mm] $d=d_{|.|}$ [/mm] und [mm] $e=e_{|.|}$ [/mm] jeweils die vom Betrag induzierte Metrik sei.)
Hierbei muss man nicht mehr können, als den Abstand zwischen komplexen (und damit auch reellen) Zahlen messen zu können.
> Und wie kann ich mir eine Funktion im koplexen überhaupt
> vorstellen, wenn doch die Elemente von [mm]\IC[/mm] nicht
> anordenbar sind...?
Was hat das mit der Anordnung zu tun? Das einzige, was hier relevant ist, ist eine Abstandsmessung zwischen Objekten in [mm] $\IR$ [/mm] und/oder in [mm] $\IC$. [/mm] Im allgemeinen reicht hier ein metrischer Raum dafür.
(Mit der Definition der Stetigkeit vermittels "Umgebungen" kann man sogar noch abstrakter in topologischen Räumen arbeiten, aber ich denke, man versteht die Definition der Stetigkeit von Funktionen "der Art" [mm] $\IR \to \IC$, $\IC \to \IR$ [/mm] oder [mm] $\IC \to \IC$ [/mm] viel besser, wenn man die, etwas abstraktere Definition, bzgl. Abbildungen zwischen metrischen Räumen versteht. Hier schon mit topologischen Räumen zu arbeiten wäre m.E. dann doch etwas zu weit gegriffen, aber metrische Räume halte ich schon für sinnvoll.)
Gruß,
Marcel
|
|
|
|