www.vorkurse.de
Ein Projekt von vorhilfe.de
Die Online-Kurse der Vorhilfe

E-Learning leicht gemacht.
Hallo Gast!einloggen | registrieren ]
Startseite · Mitglieder · Teams · Forum · Wissen · Kurse · Impressum
Forenbaum
^ Forenbaum
Status Mathe-Vorkurse
  Status Organisatorisches
  Status Schule
    Status Wiederholung Algebra
    Status Einführung Analysis
    Status Einführung Analytisc
    Status VK 21: Mathematik 6.
    Status VK 37: Kurvendiskussionen
    Status VK Abivorbereitungen
  Status Universität
    Status Lerngruppe LinAlg
    Status VK 13 Analysis I FH
    Status Algebra 2006
    Status VK 22: Algebra 2007
    Status GruMiHH 06
    Status VK 58: Algebra 1
    Status VK 59: Lineare Algebra
    Status VK 60: Analysis
    Status Wahrscheinlichkeitst

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Funktionalanalysis" - Komplexe Ableitung
Komplexe Ableitung < Funktionalanalysis < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Funktionalanalysis"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Komplexe Ableitung: Tipp
Status: (Frage) beantwortet Status 
Datum: 08:44 So 24.05.2015
Autor: JigoroKano

Hallo liebe Community 😃,

Ich möchte gerne die Ableitungen von [mm] f_{1}(z)=(2i)^{z} [/mm] und [mm] f_{2}(z)=z^{1+i} [/mm] berechnen. Leider habe ich gar keine Idee, wie ich da rangehen soll.... Vllt könnt ihr mir ein bisschen helfen :)?

Beste Grüße :)

        
Bezug
Komplexe Ableitung: Antwort
Status: (Antwort) fertig Status 
Datum: 09:14 So 24.05.2015
Autor: M.Rex

Hallo.

In den komplexen Zahlen [mm] \IC [/mm] gilt doch - ähnlich wie im rellen:

[mm] f'(z)=\lim\limits_{h\to0}\frac{f(z+h)-f(z)}{h} [/mm]

Es gelten also weiterhin die aus den reellen Zahlen bekannten Regeln der Ableitung, also Summenregel, Faktorregel, Kettenregel, Produktregel und Quotientenregel.

Leite die beiden Funktionen also mal nach den aus [mm] \IR [/mm] bekannten Regeln ab.

[mm] f_{2}(z)=z^{1+i} [/mm] sollte damit eigentlich problemlos ableitbar sein, das ist da die Form [mm] f(x)=x^{n}, [/mm] dessen Ableitung du sicher bilden kannst.

Und auch [mm] f_{1}(x)=(2i)^{z} [/mm] ist eine Exponentialfunktion der Form [mm] f(x)=a^{x}, [/mm] die Ableitung solltest du aus [mm] \IR [/mm] noch kennen.

Probier mal, wie weit du kommst, dann sehen wir weiter.

Marius

Bezug
        
Bezug
Komplexe Ableitung: Antwort
Status: (Antwort) fertig Status 
Datum: 07:38 Di 26.05.2015
Autor: fred97

Die allgemeine Potenz [mm] a^b [/mm] mit a,b [mm] \in \IC [/mm] ist nicht eindeutig:

Es ist [mm] a^b=e^{a*log(b)} [/mm] und der komplexe Logarithmus ist nicht eindeutig.

Beispiel:

   [mm] (2i)^z= e^{z*log(2i)}, [/mm]

wobei die Logarithmen von 2i gegeben sind durch

  [mm] $log(2)+i*\bruch{\pi}{2}+2 [/mm] k [mm] \pi [/mm] i$  für k [mm] \in \IZ. [/mm]

Für jedes k [mm] \in \IZ [/mm] bekommen wir also ein "Funktion" [mm] (2i)^z. [/mm]

FRED

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Funktionalanalysis"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorkurse.de
[ Startseite | Mitglieder | Teams | Forum | Wissen | Kurse | Impressum ]