www.vorkurse.de
Ein Projekt von vorhilfe.de
Die Online-Kurse der Vorhilfe

E-Learning leicht gemacht.
Hallo Gast!einloggen | registrieren ]
Startseite · Mitglieder · Teams · Forum · Wissen · Kurse · Impressum
Forenbaum
^ Forenbaum
Status Mathe-Vorkurse
  Status Organisatorisches
  Status Schule
    Status Wiederholung Algebra
    Status Einführung Analysis
    Status Einführung Analytisc
    Status VK 21: Mathematik 6.
    Status VK 37: Kurvendiskussionen
    Status VK Abivorbereitungen
  Status Universität
    Status Lerngruppe LinAlg
    Status VK 13 Analysis I FH
    Status Algebra 2006
    Status VK 22: Algebra 2007
    Status GruMiHH 06
    Status VK 58: Algebra 1
    Status VK 59: Lineare Algebra
    Status VK 60: Analysis
    Status Wahrscheinlichkeitst

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Uni-Analysis" - Kompaktheit
Kompaktheit < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Analysis"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Kompaktheit: Aufgabe
Status: (Frage) für Interessierte Status 
Datum: 01:01 Do 27.01.2005
Autor: Sauerstoff

Hallo MatheRaum

Frage1: Entscheiden Sie, ob die folgenden Mengen kompakt sind oder nicht, und beweisen Sie dies direkt (ohne Verwendung von folgendem Satz):

Satz: Sei $ M [mm] \subset [/mm] X $ kompakt. Dann gilt:
(1) M beschränkt, d.h. $ [mm] \exists [/mm] R>0 ,      M [mm] \subset [/mm] B(0,R) $
(2) M abgeschlossen
(3) Eine Teilmenge $ M [mm] \subset K^m [/mm] $ ist kompakt $ [mm] \gdw [/mm] $ M beschränkt und abgeschlossen

Frage1 a) Die Menge der natürlichen Zahlen $ [mm] \IN \subset \IR. [/mm] $
b) Die Menge $ M= (0,1) [mm] \subset \IR. [/mm] $
c) Die Menge $ K:= [mm] \{a\} \cup \{x_k: k\in \IN\} \subset [/mm] X $ mit  $ [mm] \{x_k\} [/mm] $ eine konvergente Folge im normierten Raum  X mit Grenzwert a.

Könnte mir jemand helfen?

Besten Dank im Voraus
Sauerstoff

        
Bezug
Kompaktheit: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 20:09 Do 27.01.2005
Autor: SEcki


> Frage1: Entscheiden Sie, ob die folgenden Mengen kompakt
> sind oder nicht, und beweisen Sie dies direkt (ohne
> Verwendung von folgendem Satz):

Und wie habt ihr kompakt dann definiert? Heine-Botrelsche-Überdeckungseigenschaft?


> Frage1 a) Die Menge der natürlichen Zahlen [mm]\IN \subset \IR.[/mm]

Finde mal eine Überdeckung, aus der man keine endliche auswählen kann - das ist sehr einfach ...

> b) Die Menge [mm]M= (0,1) \subset \IR.[/mm]

Hier mal von inne mit geigeneten Intervallen ausschöüfen - zB mit Hilfe der Nullfolge 1/n .

>  c) Die Menge [mm]K:= \{a\} \cup \{x_k: k\in \IN\} \subset X[/mm]
> mit  [mm]\{x_k\}[/mm] eine konvergente Folge im normierten Raum  X
> mit Grenzwert a.

Überdecke das mal - was folgt aus der Überdeckung von A?

SEcki

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Analysis"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorkurse.de
[ Startseite | Mitglieder | Teams | Forum | Wissen | Kurse | Impressum ]