www.vorkurse.de
Ein Projekt von vorhilfe.de
Die Online-Kurse der Vorhilfe

E-Learning leicht gemacht.
Hallo Gast!einloggen | registrieren ]
Startseite · Mitglieder · Teams · Forum · Wissen · Kurse · Impressum
Forenbaum
^ Forenbaum
Status Mathe-Vorkurse
  Status Organisatorisches
  Status Schule
    Status Wiederholung Algebra
    Status Einführung Analysis
    Status Einführung Analytisc
    Status VK 21: Mathematik 6.
    Status VK 37: Kurvendiskussionen
    Status VK Abivorbereitungen
  Status Universität
    Status Lerngruppe LinAlg
    Status VK 13 Analysis I FH
    Status Algebra 2006
    Status VK 22: Algebra 2007
    Status GruMiHH 06
    Status VK 58: Algebra 1
    Status VK 59: Lineare Algebra
    Status VK 60: Analysis
    Status Wahrscheinlichkeitst

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Folgen und Reihen" - Kompaktheit
Kompaktheit < Folgen und Reihen < eindimensional < reell < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Folgen und Reihen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Kompaktheit: kurze frage
Status: (Frage) beantwortet Status 
Datum: 02:23 Mo 03.12.2007
Autor: jaruleking

Aufgabe
[mm] K=[0,1]\cap\IQ [/mm] ist nicht Kompakt, da [mm] \bruch \wurzel{2}{2}, [/mm] die 2 soll unter die wurzel, habe es nicht hinbekommen, der Bruch ein Häufungspunkt ist und nicht in K liegt.

So habe jetzt mal ne frage zur späten stunde. die schreibeweise oben, ist die zahl dann eine rationale zahl, weil man sie als bruch darstellen kann und rationale zahlen liegen ja nicht in meiner menge, deshalb ist der häufungspunkt auserhalb von k. ist das so richtig? oder wie kann man das erklären?

danke schon mal

gruß

        
Bezug
Kompaktheit: Antwort
Status: (Antwort) fertig Status 
Datum: 03:14 Mo 03.12.2007
Autor: MatthiasKr

Hi,
> [mm]K=[0,1]\cap\IQ[/mm] ist nicht Kompakt, da [mm]\bruch {\wurzel{2}){2},[/mm]
> die 2 soll unter die wurzel, habe es nicht hinbekommen, der
> Bruch ein Häufungspunkt ist und nicht in K liegt.
>  So habe jetzt mal ne frage zur späten stunde. die
> schreibeweise oben, ist die zahl dann eine rationale zahl,
> weil man sie als bruch darstellen kann und rationale zahlen
> liegen ja nicht in meiner menge, deshalb ist der
> häufungspunkt auserhalb von k. ist das so richtig? oder wie
> kann man das erklären?
>  
> danke schon mal
>  
> gruß

also: deine menge sind alle rationalen zahlen im einheitsintervall. die zahl [mm] $\frac{\sqrt{2}}{2}$ [/mm] (die meinst du doch oder?) ist irrational, also nicht in der menge. Allerdings sind alle irrationalen zahlen HPe der rationalen zahlen, da diese in den reellen zahlen DICHT liegen. also auch [mm] $\frac{\sqrt{2}}{2}$. [/mm]
je nachdem, wie ihr kompaktheit definiert habt, kann man dann folgern, dass deine menge nicht kompakt ist, ja. (sie ist nicht abgeschlossen)

gruss
matthias

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Folgen und Reihen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorkurse.de
[ Startseite | Mitglieder | Teams | Forum | Wissen | Kurse | Impressum ]