Kompakte Konvergenz < Sonstiges < Analysis < Hochschule < Mathe < Vorhilfe
|
Aufgabe | a) Lösen Sie für jedes [mm] $\epsilon \geqslant [/mm] 0$ das Anfangswertproblem
[mm] $\dot{x}=\begin{pmatrix}3 & 1\\ \epsilon^2 & 3\end{pmatrix}x, \quad x(0)=\vektor{0 \\ 2}.$ [/mm]
b) Es sei [mm] $x_\epsilon$ [/mm] die Lösung aus a) zu [mm] $\epsilon>0$. [/mm] Bestimmen Sie [mm] $\textstyle\lim_{\epsilon\downarrow 0} x_\epsilon(t)$ [/mm] für [mm] $t\in\mathbb{R}$ [/mm] durch direktes Nachrechnen. Liegt gleichmäßige Konvergenz auf kompakten Teilintervallen vor? |
Hallo alle miteinander,
ich könnte noch mal etwas Hilfe bei einem Teil der obigen Aufgabe gebrauchen, und zwar bei der Frage der gleichmäßigen Konvergenz auf kompakten Teilintervallen.
Es ist übrigens [mm] $x(t)=\vektor{ 2t\mathrm{e}^{3t}\\2\mathrm{e}^{3t}}$ [/mm] und [mm] $x_\epsilon(t)=\vektor{\frac{1}{\epsilon}\left(\mathrm{e}^{(3+\epsilon)t}-\mathrm{e}^{(3-\epsilon)t}\right)\\\mathrm{e}^{(3+\epsilon)t}+\mathrm{e}^{(3-\epsilon)t}}$, [/mm] sofern ich mich nicht verrechnet habe.
Ich bin zuerst davon ausgegangen, dass tatsächlich gleichmäßige Konvergenz auf kompakten Teilintervallen vorliegt, wollte also
[mm] $\underset{t\in[a,b]}{\sup}\left\lVert x_\epsilon(t)-x(t)\right\rVert=\underset{t\in[a,b]}{\sup}\left\lVert \vektor{\frac{1}{\epsilon}\left(\mathrm{e}^{(3+\epsilon)t}-\mathrm{e}^{(3-\epsilon)t}\right)\\\mathrm{e}^{(3+\epsilon)t}+\mathrm{e}^{(3-\epsilon)t}} - \vektor{ 2t\mathrm{e}^{3t}\\2\mathrm{e}^{3t}}\right\rVert\to [/mm] 0$ für [mm] $\epsilon\to [/mm] 0$ zeigen, bin damit aber nicht weitergekommen, weder mit der Maximumsnorm, noch mit der Euklidischen. Da die Teilaufgabe nur einen Punkt wert ist, dieser Teil also wahrscheinlich nur einen halben, gehe ich mal stark davon aus, dass hier keine gleichmäßige Konvergenz auf kompakten Teilintervallen vorliegt, es sei denn, ich habe irgendeinen Trick übersehen (würde mich nicht wundern).
Deswegen meine Frage: Könntet ihr mir einen Tipp zu einem Gegenbeispiel geben? Ich komme irgendwie auf keine Idee, würde die Aufgabe aber gerne komplettieren.
|
|
|
|
Status: |
(Mitteilung) Reaktion unnötig | Datum: | 17:20 Fr 07.06.2013 | Autor: | matux |
$MATUXTEXT(ueberfaellige_frage)
|
|
|
|