www.vorkurse.de
Ein Projekt von vorhilfe.de
Die Online-Kurse der Vorhilfe

E-Learning leicht gemacht.
Hallo Gast!einloggen | registrieren ]
Startseite · Mitglieder · Teams · Forum · Wissen · Kurse · Impressum
Forenbaum
^ Forenbaum
Status Mathe-Vorkurse
  Status Organisatorisches
  Status Schule
    Status Wiederholung Algebra
    Status Einführung Analysis
    Status Einführung Analytisc
    Status VK 21: Mathematik 6.
    Status VK 37: Kurvendiskussionen
    Status VK Abivorbereitungen
  Status Universität
    Status Lerngruppe LinAlg
    Status VK 13 Analysis I FH
    Status Algebra 2006
    Status VK 22: Algebra 2007
    Status GruMiHH 06
    Status VK 58: Algebra 1
    Status VK 59: Lineare Algebra
    Status VK 60: Analysis
    Status Wahrscheinlichkeitst

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Gruppe, Ring, Körper" - Kommutatoruntergruppe
Kommutatoruntergruppe < Gruppe, Ring, Körper < Algebra < Algebra+Zahlentheo. < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Gruppe, Ring, Körper"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Kommutatoruntergruppe: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 20:10 So 15.11.2009
Autor: hannahmaontana

Aufgabe
Bestimmen Sie die Kommutatoruntergruppe von [mm] GL(2,\IR) [/mm]

Ich habe ein paar Probleme bei dieser Aufgabe.

Für jede Matrix M der Kommutatoruntergruppe muss gelten:
[mm] M=ABA^{-1}B^{-1} [/mm] wobei A und B aus [mm] GL(2,\IR) [/mm] sind.

Wie muss ich jetzt weitermachen?

Mein erster Gedanke war, dass [mm] MB=ABA^{-1}, [/mm] also M ähnlich zu Matrizen aus GL sein muss, aber das ist ja sowieso schon klar.

Ich meine irgendwo gehört zu haben, dass [mm] SL(2,\IR) [/mm] die gesuchte Gruppe ist, weiß aber nicht wieso.

        
Bezug
Kommutatoruntergruppe: Antwort
Status: (Antwort) fertig Status 
Datum: 20:46 So 15.11.2009
Autor: felixf

Hallo!

> Bestimmen Sie die Kommutatoruntergruppe von [mm]GL(2,\IR)[/mm]
>  Ich habe ein paar Probleme bei dieser Aufgabe.
>  
> Für jede Matrix M der Kommutatoruntergruppe muss gelten:
> [mm]M=ABA^{-1}B^{-1}[/mm] wobei A und B aus [mm]GL(2,\IR)[/mm] sind.
>  
> Wie muss ich jetzt weitermachen?

Rechne mal [mm] $\det [/mm] M$ aus. Dann siehst du, dass $M [mm] \in [/mm] SL(2, [mm] \IR)$ [/mm] ist.

> Ich meine irgendwo gehört zu haben, dass [mm]SL(2,\IR)[/mm] die
> gesuchte Gruppe ist, weiß aber nicht wieso.

Versuch doch mal zu zeigen, dass jedes Element aus $SL(2, [mm] \IR)$ [/mm] als Kommutator geschrieben werden kann. Oder zuminest ein Erzeugendensystem von $SL(2, [mm] \IR)$. [/mm] Vielleicht geht das ja?

LG Felix


Bezug
                
Bezug
Kommutatoruntergruppe: Frage (überfällig)
Status: (Frage) überfällig Status 
Datum: 21:13 So 15.11.2009
Autor: hannahmaontana


> Rechne mal [mm]\det M[/mm] aus. Dann siehst du, dass [mm]M \in SL(2, \IR)[/mm]
> ist.
>  

Das hab ich gemacht, und es kommt 1 raus, weil die Determinante vom Inversen das Inverse der Determinante ist.

> Versuch doch mal zu zeigen, dass jedes Element aus [mm]SL(2, \IR)[/mm]
> als Kommutator geschrieben werden kann. Oder zuminest ein
> Erzeugendensystem von [mm]SL(2, \IR)[/mm]. Vielleicht geht das ja?

Muss ich das jetzt noch zeigen? Es scheint mir doch sehr kompliziert. Eine Basis ist z.B [mm] \pmat{ 1 & b \\ 0 & 1 }, \pmat{ 1 & 0 \\ b & 1 } [/mm]
aber doch nur für "+" und brauche ich nicht eins für "mal"?

Bezug
                        
Bezug
Kommutatoruntergruppe: Fälligkeit abgelaufen
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 17:20 Mo 16.11.2009
Autor: matux

$MATUXTEXT(ueberfaellige_frage)
Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Gruppe, Ring, Körper"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorkurse.de
[ Startseite | Mitglieder | Teams | Forum | Wissen | Kurse | Impressum ]