www.vorkurse.de
Ein Projekt von vorhilfe.de
Die Online-Kurse der Vorhilfe

E-Learning leicht gemacht.
Hallo Gast!einloggen | registrieren ]
Startseite · Mitglieder · Teams · Forum · Wissen · Kurse · Impressum
Forenbaum
^ Forenbaum
Status Mathe-Vorkurse
  Status Organisatorisches
  Status Schule
    Status Wiederholung Algebra
    Status Einführung Analysis
    Status Einführung Analytisc
    Status VK 21: Mathematik 6.
    Status VK 37: Kurvendiskussionen
    Status VK Abivorbereitungen
  Status Universität
    Status Lerngruppe LinAlg
    Status VK 13 Analysis I FH
    Status Algebra 2006
    Status VK 22: Algebra 2007
    Status GruMiHH 06
    Status VK 58: Algebra 1
    Status VK 59: Lineare Algebra
    Status VK 60: Analysis
    Status Wahrscheinlichkeitst

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Algebra" - Kommutative Algebra
Kommutative Algebra < Algebra < Algebra+Zahlentheo. < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Algebra"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Kommutative Algebra: Kongruenzen
Status: (Frage) beantwortet Status 
Datum: 19:47 Do 16.02.2006
Autor: Jan_Z

Aufgabe
Sei R ein Ring, und P ein echtes Ideal in R. Seien x und y aus R mit:
x [mm] \equiv [/mm] y mod [mm] P^{n} [/mm] für alle nat. Zahlen n
Folgt dann x=y?

Ich arbeite gerade einen Beweis durch; falls die obige Aussage stimmt, dann hab ich den Beweis verstanden. Vom Gefühl her würd ich auf ja tippen, hab aber keine Idee wie man das sieht...
Vielen Dank im Voraus!
Gruß, Jan

        
Bezug
Kommutative Algebra: Antwort
Status: (Antwort) fertig Status 
Datum: 08:23 Fr 17.02.2006
Autor: mathiash

Hallo und guten Morgen aus Bonn !

Also die Frage ist doch, ob, wenn P ein echtes Ideal von R ist, dann


[mm] \bigcap_{n\in\IN} P^n \:\: =\:\: \{0\} [/mm]


gilt, nicht wahr ?

Dies gilt wohl i.a. nicht, aer es gilt fuer Hauptidealringe (hab im Netz mal geschaut).

Fuer ein Gegenbeispiel sollte man also schon mal einen Ring nehmen, der kein Hauptidealring ist.

Gruss,

Mathias



Bezug
                
Bezug
Kommutative Algebra: danke!
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 09:12 Fr 17.02.2006
Autor: Jan_Z

Hallo Mathias,
auf diese Umformung mit dem Schnitt bin ich gar nicht gekommen, aber so sehe ich zumindest, warum die Aussage in meinem speziellen Fall richtig ist, da hat R bzw. P nämlich noch gewisse spezielle Eigenschaften...
Vielen Dank!

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Algebra"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorkurse.de
[ Startseite | Mitglieder | Teams | Forum | Wissen | Kurse | Impressum ]