www.vorkurse.de
Ein Projekt von vorhilfe.de
Die Online-Kurse der Vorhilfe

E-Learning leicht gemacht.
Hallo Gast!einloggen | registrieren ]
Startseite · Mitglieder · Teams · Forum · Wissen · Kurse · Impressum
Forenbaum
^ Forenbaum
Status Mathe-Vorkurse
  Status Organisatorisches
  Status Schule
    Status Wiederholung Algebra
    Status Einführung Analysis
    Status Einführung Analytisc
    Status VK 21: Mathematik 6.
    Status VK 37: Kurvendiskussionen
    Status VK Abivorbereitungen
  Status Universität
    Status Lerngruppe LinAlg
    Status VK 13 Analysis I FH
    Status Algebra 2006
    Status VK 22: Algebra 2007
    Status GruMiHH 06
    Status VK 58: Algebra 1
    Status VK 59: Lineare Algebra
    Status VK 60: Analysis
    Status Wahrscheinlichkeitst

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Uni-Lineare Algebra" - Komische Aufgabenstellung ?
Komische Aufgabenstellung ? < Lineare Algebra < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Lineare Algebra"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Komische Aufgabenstellung ?: Könnt ihr helfen ?
Status: (Frage) beantwortet Status 
Datum: 00:03 Mi 27.04.2005
Autor: Gotteskraft

Ich habe hier eine sehr eigenartige Aufgabenstellung. Das Problem ist nicht, dass ich Sie nicht verstehe sondern dass ich nicht checke was ich überhaupt zeigen soll, da das was da steht irgendwie selbstbeweisend ist.

Hier die Aufgabe:

Man zeige f ist genau dann injektiv, wenn für jeden Vektorraum U und alle
linearen Abbildungen g, g' : U -> V gilt, daß aus f o g = f o g' schon
g = g' folgt ...



Mein Lösungsansatz:

wenn aus

(f(g(x)) = f(g'(x))

folgt, dass g(x) = g'(x) ist, dann ist doch logisch dass f injektiv ist
weil g(x) und g'(x) sind ja Elemente aus V
also nennen wir die mal um
in x1 und x2
dann wuerde das heissen
aus f(x1) = f(x2) folgt x1 = x2
und das ist die bedingung fuer die injektivität
q.e.d ?!?


Das kanns irgendwie net sein :P

Jemand ne Idee was ich da übersehe ? Kleiner Tip genügt


Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.

        
Bezug
Komische Aufgabenstellung ?: "Umdrehen?"
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 08:39 Mi 27.04.2005
Autor: MicMuc

Vielleicht gefällt es Dir besser, wenn Du die Aussage "umdrehst":

Also DU nimmst an f sei nicht injektiv, dann gibt es

blabla

und dann konstruierst Du Dir g und g' so, dass

zwar

blabla

aber nicht

blabla

gilt.

Soll ja nur ein Tipp sein. Aber ich weiss nicht, ob Dir das dann besser gefällt.

(P.S.: Definiert Dein Prof. Abbildungen auch über "universelle Eigenschaften"?)

Bezug
        
Bezug
Komische Aufgabenstellung ?: editiert
Status: (Antwort) fertig Status 
Datum: 10:23 Mi 27.04.2005
Autor: Julius

Hallo Gotteskraft!

Du findest den zugehörigen Beweis (formuliert von Marc) hier in unserer Mathebank:

http://www.mathebank.de/tiki-index.php?page=Typische+Surjektivit%E4ts-+und+Injektivit%E4tss%E4tze

Ich sehe gerade, dass dort nur der Beweis für die Surjektivität steht. Aber du kannst ihn dir ja mal zum Vorbild nehmen und den anderen Beweis dann selber (ähnlich) versuchen.

Wenn du Fragen dazu hast, dann melde dich bitte. :-)

Viele Grüße
Julius

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Lineare Algebra"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorkurse.de
[ Startseite | Mitglieder | Teams | Forum | Wissen | Kurse | Impressum ]