www.vorkurse.de
Ein Projekt von vorhilfe.de
Die Online-Kurse der Vorhilfe

E-Learning leicht gemacht.
Hallo Gast!einloggen | registrieren ]
Startseite · Mitglieder · Teams · Forum · Wissen · Kurse · Impressum
Forenbaum
^ Forenbaum
Status Mathe-Vorkurse
  Status Organisatorisches
  Status Schule
    Status Wiederholung Algebra
    Status Einführung Analysis
    Status Einführung Analytisc
    Status VK 21: Mathematik 6.
    Status VK 37: Kurvendiskussionen
    Status VK Abivorbereitungen
  Status Universität
    Status Lerngruppe LinAlg
    Status VK 13 Analysis I FH
    Status Algebra 2006
    Status VK 22: Algebra 2007
    Status GruMiHH 06
    Status VK 58: Algebra 1
    Status VK 59: Lineare Algebra
    Status VK 60: Analysis
    Status Wahrscheinlichkeitst

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Kombinatorik" - Kombinatorik Wege im Gitter
Kombinatorik Wege im Gitter < Kombinatorik < Stochastik < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Kombinatorik"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Kombinatorik Wege im Gitter: Aufgabe 2, Lösungsansatz
Status: (Frage) beantwortet Status 
Datum: 23:21 Mo 06.10.2014
Autor: Schumo

Aufgabe
Gegeben sei folgendes (7x8)-Gitter. Eine Maus möchte von A=(1,1) nach B=(7,8) gelangen, an Position C=(4,3) steht eine Mausefalle. Die Maus kann im Gitter nur schrittweise nach unten und nach rechts gehen.

a) Auf wie vielen Wegen kann die Maus unbeschadet nach B gelangen?

b) Vorausgesetzt die Maus wählt ihren Weg zufällig, wie hoch ist die Wahrscheinlickeit, dass die Maus unbeschadet nach B gelangt?

Guten Abend liebe Leidensgenossen und Matheliebhaber,

Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.
ich habe es heute leider nicht zur Vorlesung geschafft und konnte mir die Folien nur Online anschauen. Ich möchte natürlich nicht, dass mir die Aufgaben jemand löst, ledeglich etwas Hilfestellung für einen Lösungsansatz. Ich bin für jede Hilfe dankbar :)

mfg

Schumo

        
Bezug
Kombinatorik Wege im Gitter: Antwort
Status: (Antwort) fertig Status 
Datum: 23:40 Mo 06.10.2014
Autor: leduart

Hallo
a)zeichne das Gitter.
b) du kannst 7 mal u und 6 mal r quf wie viele Weisen kannst du die auf 13 Plätze verteilen? das sind i alle Möglichkeiten.
c) wie viele davon führen nach 43 also 3r und 2u?
Gruss leduart

Bezug
        
Bezug
Kombinatorik Wege im Gitter: Antwort
Status: (Antwort) fertig Status 
Datum: 18:52 Mi 08.10.2014
Autor: chrisno

Eigentlich hat Leduart schon alles geschrieben. Fang mal klein an:
von a nach (2;3) muss man einen Schritt in x-Richtung und zwei in y-Richtung gehen. Die Reihenfolge ist egal. Also xyy, yxy, yyx sind alle drei verschiedenen Möglichkeiten. Mit sieben x und 8 y wird es etwas aufwendiger. Also ist eine Formel gefragt.

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Kombinatorik"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorkurse.de
[ Startseite | Mitglieder | Teams | Forum | Wissen | Kurse | Impressum ]