www.vorkurse.de
Ein Projekt von vorhilfe.de
Die Online-Kurse der Vorhilfe

E-Learning leicht gemacht.
Hallo Gast!einloggen | registrieren ]
Startseite · Mitglieder · Teams · Forum · Wissen · Kurse · Impressum
Forenbaum
^ Forenbaum
Status Mathe-Vorkurse
  Status Organisatorisches
  Status Schule
    Status Wiederholung Algebra
    Status Einführung Analysis
    Status Einführung Analytisc
    Status VK 21: Mathematik 6.
    Status VK 37: Kurvendiskussionen
    Status VK Abivorbereitungen
  Status Universität
    Status Lerngruppe LinAlg
    Status VK 13 Analysis I FH
    Status Algebra 2006
    Status VK 22: Algebra 2007
    Status GruMiHH 06
    Status VK 58: Algebra 1
    Status VK 59: Lineare Algebra
    Status VK 60: Analysis
    Status Wahrscheinlichkeitst

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Kombinatorik" - Kombinatorik
Kombinatorik < Kombinatorik < Stochastik < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Kombinatorik"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Kombinatorik: Korrektur
Status: (Frage) beantwortet Status 
Datum: 13:06 So 20.09.2009
Autor: kati93

Aufgabe
Sechs Elternpaare treffen sich zur Vorbereitung eines Schulfestes in einem Gasthaus. Sie nehmen an einem runden 12er-Tisch Platz.
a)wie viele Sitzmöglichkeiten gibt es, falls immer ein Mann neben einer Frau sitzen soll?
b)Die Bestellung lautet 5 Mineralwasser, 3 Apfelsaftschorle und 4 Federweiße. Eine Aushilfe serviert jedem Gast eine beliebiges Getränk von ihrem Tablett. Mit welcher Wahrscheinlichkeit erhält jede Person genau das bestellte Getränk?

Hallo,

ich habe diese Aufgabe durchgerechnet, bin mir aber unsicher, ob ich das richtig gemacht habe. Wäre sehr lieb, wenn ihr mal drüber schaut.

a) Ich bin davon ausgegangen, dass nicht feststeht ob auf dem ersten Platz ein Mann oder eine Frau sitzt, daher hab ich auf dort noch 12 Möglichkeiten, danach nur noch 6 etc. Insgesamt hätte ich dann: 12*6*5*5*4*4*3*3*2*2*1*1=1036800 Möglichkeiten

b) [mm] \bruch{5}{12}*\bruch{4}{11}*\bruch{3}{10}*\bruch{2}{9}*\bruch{1}{8}*\bruch{3}{7}*\bruch{2}{6}*\bruch{1}{5}*\bruch{4}{4}*\bruch{3}{3}*\bruch{2}{2}*\bruch{1}{1}= \bruch{1}{27720}=0,000036 [/mm]

Vor allem bei der b) bin ich mir sehr unsicher!

Danke schön schonmal!

Liebe Grüße und einen schönen Sonntag,
Kati

        
Bezug
Kombinatorik: Antwort
Status: (Antwort) fertig Status 
Datum: 13:20 So 20.09.2009
Autor: ms2008de

Hallo,
> Sechs Elternpaare treffen sich zur Vorbereitung eines
> Schulfestes in einem Gasthaus. Sie nehmen an einem runden
> 12er-Tisch Platz.
>  a)wie viele Sitzmöglichkeiten gibt es, falls immer ein
> Mann neben einer Frau sitzen soll?
>  b)Die Bestellung lautet 5 Mineralwasser, 3
> Apfelsaftschorle und 4 Federweiße. Eine Aushilfe serviert
> jedem Gast eine beliebiges Getränk von ihrem Tablett. Mit
> welcher Wahrscheinlichkeit erhält jede Person genau das
> bestellte Getränk?
>
> Hallo,
>  
> ich habe diese Aufgabe durchgerechnet, bin mir aber
> unsicher, ob ich das richtig gemacht habe. Wäre sehr lieb,
> wenn ihr mal drüber schaut.
>
> a) Ich bin davon ausgegangen, dass nicht feststeht ob auf
> dem ersten Platz ein Mann oder eine Frau sitzt, daher hab
> ich auf dort noch 12 Möglichkeiten, danach nur noch 6 etc.
> Insgesamt hätte ich dann: 12*6*5*5*4*4*3*3*2*2*1*1=1036800
> Möglichkeiten
>  

Das stimmt

> b)
> [mm]\bruch{5}{12}*\bruch{4}{11}*\bruch{3}{10}*\bruch{2}{9}*\bruch{1}{8}*\bruch{3}{7}*\bruch{2}{6}*\bruch{1}{5}*\bruch{4}{4}*\bruch{3}{3}*\bruch{2}{2}*\bruch{1}{1}= \bruch{1}{27720}=0,000036[/mm]

Das stimmt auch, wobei ich mir das folgendermaßen klargemacht hätte:
P(X)= [mm] \bruch{\vektor{5 \\ 5}*\vektor{3 \\ 3}*\vektor{4 \\ 4} }{\vektor{12 \\ 5}*\vektor{7 \\ 4}*\vektor{3 \\ 3}}, [/mm] wobei im Zähler die richtige Verteilung steht und im Nenner die Anzahl aller möglichen Verteilungen stehen.

  

> Liebe Grüße und einen schönen Sonntag,
>  Kati

Viele Grüße zurück

Bezug
                
Bezug
Kombinatorik: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 13:38 So 20.09.2009
Autor: kati93

super, vielen vielen lieben Dank!!!!!

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Kombinatorik"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorkurse.de
[ Startseite | Mitglieder | Teams | Forum | Wissen | Kurse | Impressum ]