www.vorkurse.de
Ein Projekt von vorhilfe.de
Die Online-Kurse der Vorhilfe

E-Learning leicht gemacht.
Hallo Gast!einloggen | registrieren ]
Startseite · Mitglieder · Teams · Forum · Wissen · Kurse · Impressum
Forenbaum
^ Forenbaum
Status Mathe-Vorkurse
  Status Organisatorisches
  Status Schule
    Status Wiederholung Algebra
    Status Einführung Analysis
    Status Einführung Analytisc
    Status VK 21: Mathematik 6.
    Status VK 37: Kurvendiskussionen
    Status VK Abivorbereitungen
  Status Universität
    Status Lerngruppe LinAlg
    Status VK 13 Analysis I FH
    Status Algebra 2006
    Status VK 22: Algebra 2007
    Status GruMiHH 06
    Status VK 58: Algebra 1
    Status VK 59: Lineare Algebra
    Status VK 60: Analysis
    Status Wahrscheinlichkeitst

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Kombinatorik" - Kombinatorik
Kombinatorik < Kombinatorik < Stochastik < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Kombinatorik"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Kombinatorik: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 13:55 Fr 14.11.2008
Autor: Woodstock_x

Aufgabe
Neun Personen besteigen einen Zug mit 3 Wagen. Jede Person wählt unabhängig von den andren einen Wagen.
a)Wie viele Möglichkeiten gibt es, dass genau drei Personen in den ersten Wagen steigen?

b)Wie viele Möglichkeiten gibt es, dass mindestens drei Personen in den ersten Wagen steigen?

c)Wie viele Möglichkeiten gibt es, dass jeweils drei Personen in jeden Wagen steigen?

Hallo Leute

Also a) habe ich mir so gedacht:

Ich tue so, als ob der 1. Wagen nur drei Leute aufnehmen kann. Dann ist das eine Kombination ohne zurücklegen, d.h. es gibt
[mm] \vektor{9 \\ 3} [/mm] = 84 verschiedene Möglichkeiten.

Ich habe aber keine Ahnung, wie ich an b und c rangehen soll.
Ich hoff, es kann mir jemand helfen wie ich mir das vorstellen soll!

Gruß

        
Bezug
Kombinatorik: Antwort
Status: (Antwort) fertig Status 
Datum: 14:21 Fr 14.11.2008
Autor: otto.euler

b) "mindestens drei Personen" heißt doch: "genau drei Personen" oder "genau vier Personen" oder ... oder "genau neun Personen". Also kannst du deinen Ansatz von a) darauf anwenden.

c) hier sollen "genau drei Personen in den ersten Wagen" und "genau drei Personen der verbleibenden sechs Personen in den zweiten Wagen" und "genau drei Personen der drei verbleibenden drei Personen in den dritten Wagen". Also kannst du deinen Ansatz von a) auch darauf anwenden.

Bezug
                
Bezug
Kombinatorik: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 18:54 Mo 17.11.2008
Autor: Woodstock_x

hallo nochmal,

habe es erst jetzt geschafft zu antworten. Also danke erst einmal. Aufgabe c) ist mir nun klar.
Bei Aufgabe b): Muss ich die einzelanzahlen dann addieren? Oder steckt in "genau vier" ein Teil von " genau drei" drinn?

Gruß

Bezug
                        
Bezug
Kombinatorik: Antwort
Status: (Antwort) fertig Status 
Datum: 18:43 Di 18.11.2008
Autor: otto.euler

Ja: "genau 3" + "genau 4" + ...

(nur "maximal 4" enthält auch "genau 3"
bzw. "mindestens 3" enthält auch "genau 4")

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Kombinatorik"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorkurse.de
[ Startseite | Mitglieder | Teams | Forum | Wissen | Kurse | Impressum ]