www.vorkurse.de
Ein Projekt von vorhilfe.de
Die Online-Kurse der Vorhilfe

E-Learning leicht gemacht.
Hallo Gast!einloggen | registrieren ]
Startseite · Mitglieder · Teams · Forum · Wissen · Kurse · Impressum
Forenbaum
^ Forenbaum
Status Mathe-Vorkurse
  Status Organisatorisches
  Status Schule
    Status Wiederholung Algebra
    Status Einführung Analysis
    Status Einführung Analytisc
    Status VK 21: Mathematik 6.
    Status VK 37: Kurvendiskussionen
    Status VK Abivorbereitungen
  Status Universität
    Status Lerngruppe LinAlg
    Status VK 13 Analysis I FH
    Status Algebra 2006
    Status VK 22: Algebra 2007
    Status GruMiHH 06
    Status VK 58: Algebra 1
    Status VK 59: Lineare Algebra
    Status VK 60: Analysis
    Status Wahrscheinlichkeitst

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Mathe Klassen 8-10" - Kombinatorik
Kombinatorik < Klassen 8-10 < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Mathe Klassen 8-10"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Kombinatorik: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 16:33 Do 30.03.2017
Autor: begker1

Aufgabe
Für ein Fußballturnier soll eine Mannschaft gebildet werden, welche aus zwei Mädchen und drei Jungen bestehen soll. Dem Trainer stehen 7 Jungen und 4 Mädchen zur Verfügung.

0) Wie viele unterschiedliche Aufstellungsmöglichkeiten hat der Trainer?
a) Wie viele Möglichkeiten gibt es, wenn mindestens zwei Mädchen mitspielen müssen?
b) Wie wahrscheinlich wären genau drei Mädchen in der Mannschaft, wenn der Trainer seine Mannschaft ohne Einschränkungen per Zufall aufstellen könnte?

Ich habe hier jeweils die Formel für die Kombinationen [mm] \vektor{n \\ k} [/mm] genutzt, da die Reihenfolge der Auswahl ja keine Rolle spielt.

In Aufgabe 0) habe ich auf diese Weise 210 ( [mm] \vektor{4 \\ 2} [/mm] * [mm] \vektor{7 \\ 3}) [/mm] Möglichkeiten als Lösung.

In Aufgabe a) gibt es für für 2 Mädchen 210, für 3 Mädchen 84 und für 4 Mädchen 7 Möglichkeiten. Es sind also insgesamt 301 Möglichkeiten.

Für Aufgabe b) habe ich noch die Anzahl an Kombinationen für 0 Mädchen (21) und 1 Mädchen (140) errechnet. Dann habe ich die Gesamtzahl an Kombinationen für 0, 1, 2, 3 und 4 Mädchen addiert (Summe: 462). Für 3 Mädchen gibt es 84 Kombinationsmöglichkeiten. Die Wahrscheinlichkeit beträgt also: 84/462=0,18182.

Sind meine Überlegungen korrekt?

        
Bezug
Kombinatorik: Antwort
Status: (Antwort) fertig Status 
Datum: 16:58 Do 30.03.2017
Autor: Diophant

Hallo,

> Für ein Fußballturnier soll eine Mannschaft gebildet
> werden, welche aus zwei Mädchen und drei Jungen bestehen
> soll. Dem Trainer stehen 7 Jungen und 4 Mädchen zur
> Verfügung.

>

> 0) Wie viele unterschiedliche Aufstellungsmöglichkeiten
> hat der Trainer?
> a) Wie viele Möglichkeiten gibt es, wenn mindestens zwei
> Mädchen mitspielen müssen?
> b) Wie wahrscheinlich wären genau drei Mädchen in der
> Mannschaft, wenn der Trainer seine Mannschaft ohne
> Einschränkungen per Zufall aufstellen könnte?
> Ich habe hier jeweils die Formel für die Kombinationen
> [mm]\vektor{n \\ k}[/mm] genutzt, da die Reihenfolge der Auswahl ja
> keine Rolle spielt.

>

> In Aufgabe 0) habe ich auf diese Weise 210 ( [mm]\vektor{4 \\ 2}[/mm]
> * [mm]\vektor{7 \\ 3})[/mm] Möglichkeiten als Lösung.

>

Das ist richtig.

> In Aufgabe a) gibt es für für 2 Mädchen 210, für 3
> Mädchen 84 und für 4 Mädchen 7 Möglichkeiten. Es sind
> also insgesamt 301 Möglichkeiten.

Auch das ist richtig.

>

> Für Aufgabe b) habe ich noch die Anzahl an Kombinationen
> für 0 Mädchen (21) und 1 Mädchen (140) errechnet. Dann
> habe ich die Gesamtzahl an Kombinationen für 0, 1, 2, 3
> und 4 Mädchen addiert (Summe: 462). Für 3 Mädchen gibt
> es 84 Kombinationsmöglichkeiten. Die Wahrscheinlichkeit
> beträgt also: 84/462=0,18182.

>

Psast auch und lässt sich noch kürzen zu

[mm] P=\frac{2}{11}\approx{0.182} [/mm]

> Sind meine Überlegungen korrekt?

Ja.


Gruß, Diophant

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Mathe Klassen 8-10"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorkurse.de
[ Startseite | Mitglieder | Teams | Forum | Wissen | Kurse | Impressum ]