www.vorkurse.de
Ein Projekt von vorhilfe.de
Die Online-Kurse der Vorhilfe

E-Learning leicht gemacht.
Hallo Gast!einloggen | registrieren ]
Startseite · Mitglieder · Teams · Forum · Wissen · Kurse · Impressum
Forenbaum
^ Forenbaum
Status Mathe-Vorkurse
  Status Organisatorisches
  Status Schule
    Status Wiederholung Algebra
    Status Einführung Analysis
    Status Einführung Analytisc
    Status VK 21: Mathematik 6.
    Status VK 37: Kurvendiskussionen
    Status VK Abivorbereitungen
  Status Universität
    Status Lerngruppe LinAlg
    Status VK 13 Analysis I FH
    Status Algebra 2006
    Status VK 22: Algebra 2007
    Status GruMiHH 06
    Status VK 58: Algebra 1
    Status VK 59: Lineare Algebra
    Status VK 60: Analysis
    Status Wahrscheinlichkeitst

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Kombinatorik" - Kombinatorik
Kombinatorik < Kombinatorik < Stochastik < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Kombinatorik"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Kombinatorik: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 19:36 Di 20.05.2014
Autor: Mathics

Aufgabe
An einem Fußballturnier nehmen 16 Mannschaften teil. Es gebe zwei stärkste Mannschaften, die als Favoriten beim Turnier gelten. Die 16 Mannschaften  werden (zufällig) in zwei Gruppen (zu je 8 Mannschaften) eingeteilt. Ermitteln Sie die Wahrscheinlichkeit, dass die beiden stärksten Mannschaften in der gleichen Gruppe sind.

Hallo,

ich habe hier einen Lösungsvorschlag aus der Vorlesung. Undzwar sieht der wie folgt aus:


(a) Anzahl der Zusammenstellungsmöglichkeiten der zwei Gruppen: |Ω| = [mm] \vektor{16 \\ 8} [/mm] =  12 870. Es sei

• A="beide stärkste Mannschaften seien in der gleichen Gruppe",
• Ai="beide stärkste Mannschaften sind in der i-ten Gruppe", i=1,2.
Dann ist A = A1 ∪ A2. |A1| = [mm] \vektor{14 \\ 6} [/mm] = 3003, |A2| = [mm] \vektor{14 \\ 8} [/mm] = [mm] \vektor{14 \\ 6}= [/mm] 3003 (alle Gruppen sind gleich groß: daher |A1| = |A2|).

P(A1 ∪ A2)=P(A1)+P(A2)=2|A1|/|Ω|=2 [mm] \vektor{14 \\ 6} [/mm] / [mm] \vektor{16 \\ 8}= [/mm] 0.467.


Leider blicke ich bei dieser Rechnung nicht so ganz durch. Meine Gedanken wären die folgenden:

[mm] \vektor{16 \\ 8} [/mm] = das steht erstmal dafür, dass aus 16 Personen eine 8er Gruppe ausgesucht wird, wobei die Reihenfolge nicht berücksichtigt wird.

[mm] \vektor{14 \\ 6} [/mm] = das steht dafür, dass aus den 14 übrigen Leuten (ausgenommene die beiden stärksten) 6 Leute herausgenommen werden.

[mm] \vektor{14 \\ 8} [/mm] = aus 14 Leuten (ausgenommen von den 2 stärksten) wird eine 8er Gruppe zusammengestellt. Ist das hier nur Zufall, dass da dasselbe [mm] wie\vektor{14 \\ 6} [/mm] = 3003 herauskommt?

Folglich wäre am Ende:

( [mm] \vektor{14 \\ 6} [/mm] + [mm] \vektor{14 \\ 8} [/mm] ) / [mm] \vektor{16 \\ 8} [/mm]

Im Zähler steht die Möglichkeiten für eine (volle) 8 er Gruppe mit Mannschaften (ohne die 2 stärksten) und die Möglichkeiten für eine 6er Gruppe, wo nun die 2 stärksten automatisch hinzukommen. Das ganze geteilt durch alle Möglichkeiten eine zwei Gruppen zusammenzustellen im Nenner.

Was sagt Ihr zu diesen Gedanken?

LG
Mathics

        
Bezug
Kombinatorik: Antwort
Status: (Antwort) fertig Status 
Datum: 19:52 Di 20.05.2014
Autor: abakus


> An einem Fußballturnier nehmen 16 Mannschaften teil. Es
> gebe zwei stärkste Mannschaften, die als Favoriten beim
> Turnier gelten. Die 16 Mannschaften werden (zufällig) in
> zwei Gruppen (zu je 8 Mannschaften) eingeteilt. Ermitteln
> Sie die Wahrscheinlichkeit, dass die beiden stärksten
> Mannschaften in der gleichen Gruppe sind.
> Hallo,

>

> ich habe hier einen Lösungsvorschlag aus der Vorlesung.
> Undzwar sieht der wie folgt aus:

>
>

> (a) Anzahl der Zusammenstellungsmöglichkeiten der zwei
> Gruppen: |Ω| = [mm]\vektor{16 \\ 8}[/mm] = 12 870. Es sei

>

> • A="beide stärkste Mannschaften seien in der gleichen
> Gruppe",
> • Ai="beide stärkste Mannschaften sind in der i-ten
> Gruppe", i=1,2.
> Dann ist A = A1 ∪ A2. |A1| = [mm]\vektor{14 \\ 6}[/mm] = 3003,
> |A2| = [mm]\vektor{14 \\ 8}[/mm] = [mm]\vektor{14 \\ 6}=[/mm] 3003 (alle
> Gruppen sind gleich groß: daher |A1| = |A2|).

>

> P(A1 ∪ A2)=P(A1)+P(A2)=2|A1|/|Ω|=2 [mm]\vektor{14 \\ 6}[/mm] /
> [mm]\vektor{16 \\ 8}=[/mm] 0.467.

>
>

> Leider blicke ich bei dieser Rechnung nicht so ganz durch.
> Meine Gedanken wären die folgenden:

>

> [mm]\vektor{16 \\ 8}[/mm] = das steht erstmal dafür, dass aus 16
> Personen eine 8er Gruppe ausgesucht wird, wobei die
> Reihenfolge nicht berücksichtigt wird.

>

> [mm]\vektor{14 \\ 6}[/mm] = das steht dafür, dass aus den 14
> übrigen Leuten (ausgenommene die beiden stärksten) 6
> Leute herausgenommen werden.

>

> [mm]\vektor{14 \\ 8}[/mm] = aus 14 Leuten (ausgenommen von den 2
> stärksten) wird eine 8er Gruppe zusammengestellt. Ist das
> hier nur Zufall, dass da dasselbe [mm]wie\vektor{14 \\ 6}[/mm] =
> 3003 herauskommt?

>

> Folglich wäre am Ende:

>

> ( [mm]\vektor{14 \\ 6}[/mm] + [mm]\vektor{14 \\ 8}[/mm] ) / [mm]\vektor{16 \\ 8}[/mm]

>

> Im Zähler steht die Möglichkeiten für eine (volle) 8 er
> Gruppe mit Mannschaften (ohne die 2 stärksten) und die
> Möglichkeiten für eine 6er Gruppe, wo nun die 2
> stärksten automatisch hinzukommen. Das ganze geteilt durch
> alle Möglichkeiten eine zwei Gruppen zusammenzustellen im
> Nenner.

>

> Was sagt Ihr zu diesen Gedanken?

>

> LG
> Mathics

Hallo,
vielleicht ist jemand anderes bereit, deinen oder den Vorschlag der Vorlesung nachzuvollziehen.
Ich werde es nicht tun, weil beide um Größenordungen komplizierter sind als notwendig.
Hier ist meine Variante:
Eine der beiden starken Mannschaften kommt in irgendeine der beiden Gruppen (das ist sicher). Für die andere starke Mannschaft gibt es jetzt noch 15 mögliche Plätze, davon sind 7 in der selben Gruppe (und 8 in der anderen). Das Ergebnis ist 7/15. Wenn du das Gleiche hast, sollte deine Überlegung stimmen.
Gruß Abakus

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Kombinatorik"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorkurse.de
[ Startseite | Mitglieder | Teams | Forum | Wissen | Kurse | Impressum ]