www.vorkurse.de
Ein Projekt von vorhilfe.de
Die Online-Kurse der Vorhilfe

E-Learning leicht gemacht.
Hallo Gast!einloggen | registrieren ]
Startseite · Mitglieder · Teams · Forum · Wissen · Kurse · Impressum
Forenbaum
^ Forenbaum
Status Mathe-Vorkurse
  Status Organisatorisches
  Status Schule
    Status Wiederholung Algebra
    Status Einführung Analysis
    Status Einführung Analytisc
    Status VK 21: Mathematik 6.
    Status VK 37: Kurvendiskussionen
    Status VK Abivorbereitungen
  Status Universität
    Status Lerngruppe LinAlg
    Status VK 13 Analysis I FH
    Status Algebra 2006
    Status VK 22: Algebra 2007
    Status GruMiHH 06
    Status VK 58: Algebra 1
    Status VK 59: Lineare Algebra
    Status VK 60: Analysis
    Status Wahrscheinlichkeitst

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Uni-Stochastik" - Kolmogorw-Smirnow-Test
Kolmogorw-Smirnow-Test < Stochastik < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Stochastik"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Kolmogorw-Smirnow-Test: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 19:36 Fr 12.07.2013
Autor: chrisxpred

Hallo zusammen,

kann mir jemand erklären, warum beim Kolmogorow-Smirnow-Test nicht nur die Differenz  [mm] |F_n(x_i) [/mm] - [mm] F(x_i)| [/mm] (einleuchtend) sondern auch noch [mm] |F_n(x_{i-1}) [/mm] - [mm] F(x_i)| [/mm] berechnet wird?


        
Bezug
Kolmogorw-Smirnow-Test: Antwort
Status: (Antwort) fertig Status 
Datum: 20:57 Fr 12.07.2013
Autor: luis52

Moin, schau dir mal []hier die letzte Treppe rechts an.  Dort ist $ [mm] |F_n(x_{i-1}) [/mm] - [mm] F(x_i)| [/mm] $ groesser als $ [mm] |F_n(x_i) [/mm] - [mm] F(x_i)| [/mm] $.


Bezug
                
Bezug
Kolmogorw-Smirnow-Test: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 22:23 Fr 12.07.2013
Autor: chrisxpred

Mir ist bewusst, dass der Abstand $ [mm] |F_n(x_{i-1}) [/mm] - [mm] F(x_i)| [/mm] $ größer sein kann als $ [mm] |F_n(x_{i}) [/mm] - [mm] F(x_i)| [/mm] $ und eine Hypothese damit abgelehnt werden kann.

Ich verstehe aber die mathematische Begründung dahinter nicht. Warum vergleich man den Wert der empirischen Verteilungsfunktion mit dem Wert der angenommenen Verteilungsfunktion an verschiedenen Stellen?

Bezug
                        
Bezug
Kolmogorw-Smirnow-Test: Antwort
Status: (Antwort) fertig Status 
Datum: 23:23 Fr 12.07.2013
Autor: luis52

Das Kriterium ist [mm] $D=\sup_x |F_n(x) [/mm] - F(x)| $ und lehnt ab, wenn $D$ "zu gross" ist. Das $D$ kann man an den Sprungstellen der empirischen Verteilungsfunktion [mm] $F_n$ [/mm]  suchen.



Bezug
                                
Bezug
Kolmogorw-Smirnow-Test: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 00:37 Sa 13.07.2013
Autor: chrisxpred

Das ist mir klar. Aber warum auch an den Stellen x-1?

Bezug
                                        
Bezug
Kolmogorw-Smirnow-Test: Antwort
Status: (Antwort) fertig Status 
Datum: 09:41 Sa 13.07.2013
Autor: luis52


> Das ist mir klar. Aber warum auch an den Stellen x-1?


Noch einmal: Betrachte die letzte Treppe im besagten Bild, sagen wir an der Stelle [mm] $x_i$. [/mm] Dort kannst du *zwei* Abstaende messen, naemlich [mm] $|F_n(x_i)-F(x)|$ [/mm] und [mm] $\lim_{x\to x_i^-}|F_n(x)-F(x)|$, [/mm] was mit [mm] $|F_n(x_{i-1})-F(x)|$ [/mm] uebereinstimmt.

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Stochastik"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorkurse.de
[ Startseite | Mitglieder | Teams | Forum | Wissen | Kurse | Impressum ]