www.vorkurse.de
Ein Projekt von vorhilfe.de
Die Online-Kurse der Vorhilfe

E-Learning leicht gemacht.
Hallo Gast!einloggen | registrieren ]
Startseite · Mitglieder · Teams · Forum · Wissen · Kurse · Impressum
Forenbaum
^ Forenbaum
Status Mathe-Vorkurse
  Status Organisatorisches
  Status Schule
    Status Wiederholung Algebra
    Status Einführung Analysis
    Status Einführung Analytisc
    Status VK 21: Mathematik 6.
    Status VK 37: Kurvendiskussionen
    Status VK Abivorbereitungen
  Status Universität
    Status Lerngruppe LinAlg
    Status VK 13 Analysis I FH
    Status Algebra 2006
    Status VK 22: Algebra 2007
    Status GruMiHH 06
    Status VK 58: Algebra 1
    Status VK 59: Lineare Algebra
    Status VK 60: Analysis
    Status Wahrscheinlichkeitst

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Algebra" - Körperkonstruktion
Körperkonstruktion < Algebra < Algebra+Zahlentheo. < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Algebra"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Körperkonstruktion: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 08:28 Fr 06.07.2007
Autor: biler

Hallo Mathefreunde,
ich habe wieder eine Anfängerfrage:
Ist ein Körper möglich,dessen Elemente aus disjunkten Mengen mit unendlichen Elementen bestehen, in dem es zwei ausgezeichnete unedliche Mengen gibt M(+) und M(*), deren Elemente sich verhalten, wie die neutralen Elemente einens Körpers: für a,b aus M(+) gilt a+b=c; c=Element von M(+) und
d,e aus M(*) => d*e=f, f ist Element von M(*)
Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.

        
Bezug
Körperkonstruktion: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 09:44 Di 10.07.2007
Autor: angela.h.b.


>  ich habe wieder eine Anfängerfrage:

Hallo,

immerhin ist schon ein paar Tage lang niemandem etwa dazu eingefallen.

Mein Gefühl sagt mir, daß daß nicht klappt - ich meine Probleme mit dem inversen Element zu spüren.

Aber wie's geht? Keine Ahnung, leider...

Was mir sonst noch dazu einfällt und ansatzweise paßt, ist der Ring aus Teilmengen einer Grundmenge mit der symmetrischen Differenz und dem Schnitt als Verknüpfung.

DEN kriegt man jedenfalls nicht dazu, ein Körper zu sein.

Falls Du an anderer Stelle noch Informationen/eine Lösung zur Aufgabe bekommst - mich würd's interessieren.
Es klingt so einfach...

Gruß v. Angela

Bezug
        
Bezug
Körperkonstruktion: Primzahlkörper?
Status: (Antwort) fertig Status 
Datum: 10:39 Di 10.07.2007
Autor: rainerS

Hallo,

nur so als Idee:
ist nicht ein Primzahlkörper [mm]\mathbf{Z}/p\mathbf{Z}[/mm] ([mm]p\in \mathbf{N}[/mm] Primzahl) ein solcher Körper? Jedes Element ist die (unendliche) Menge aller ganzen Zahlen, die bei Ganzzahldivision durch [mm]p[/mm] den gleichen Rest ergeben.

Grüße
   Rainer


Bezug
                
Bezug
Körperkonstruktion: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 10:52 Di 10.07.2007
Autor: angela.h.b.


> nur so als Idee:
>  ist nicht ein Primzahlkörper [mm]\mathbf{Z}/p\mathbf{Z}[/mm] ([mm]p\in \mathbf{N}[/mm]
> Primzahl) ein solcher Körper? Jedes Element ist die
> (unendliche) Menge aller ganzen Zahlen, die bei
> Ganzzahldivision durch [mm]p[/mm] den gleichen Rest ergeben.

Hallo,

ich glaube, das ist nicht eine Idee, sondern die Lösung! Ich habe die Frage auf beantwortet gestellt.

Echt einfach. Anfängerfrage.

Ich kann wieder schlafen, juchee. Danke!

Gruß v. Angela

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Algebra"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorkurse.de
[ Startseite | Mitglieder | Teams | Forum | Wissen | Kurse | Impressum ]