www.vorkurse.de
Ein Projekt von vorhilfe.de
Die Online-Kurse der Vorhilfe

E-Learning leicht gemacht.
Hallo Gast!einloggen | registrieren ]
Startseite · Mitglieder · Teams · Forum · Wissen · Kurse · Impressum
Forenbaum
^ Forenbaum
Status Mathe-Vorkurse
  Status Organisatorisches
  Status Schule
    Status Wiederholung Algebra
    Status Einführung Analysis
    Status Einführung Analytisc
    Status VK 21: Mathematik 6.
    Status VK 37: Kurvendiskussionen
    Status VK Abivorbereitungen
  Status Universität
    Status Lerngruppe LinAlg
    Status VK 13 Analysis I FH
    Status Algebra 2006
    Status VK 22: Algebra 2007
    Status GruMiHH 06
    Status VK 58: Algebra 1
    Status VK 59: Lineare Algebra
    Status VK 60: Analysis
    Status Wahrscheinlichkeitst

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Uni-Lineare Algebra" - Körperisomorphismus von C
Körperisomorphismus von C < Lineare Algebra < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Lineare Algebra"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Körperisomorphismus von C: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 13:33 Mi 22.11.2006
Autor: peter_d

Aufgabe
[mm] $\text{Zeigen Sie: Die Konjugationsabbildung}$ [/mm]
[mm] $\bar{\cdot}:\mathbb{C} \to \mathbb{C},\ [/mm] z=a+bi [mm] \mapsto \bar{z}=a-bi$ [/mm]
[mm] $\text{ist ein Körperisomorphismus von }\mathbb{C}\text{; insbesondere gilt für alle }z_1, z_2 \in \mathbb{C}$ [/mm]
[mm] $\overline{z_1+z_2}=\bar{z_1}+\bar{z_2}\text{\qquad\qquad und \qquad\qquad} \overline{z_1\cdot z_2} [/mm] = [mm] \bar{z_1} \cdot \bar{z_2}$ [/mm]

Hallo.
Wie man da den Körperisomorphismus beweisen soll, habe ich ehrlicbh gesagt keine Ahnung.
Zum zweiten:
[mm] $\overline{(a+bi)+(c+di)} [/mm] = (a-bi) + (c-di) = [mm] \overline{a+bi} [/mm] + [mm] \overline{c+di}$ [/mm]

und analog das zweite.

Geht das so. Wohl nicht oder? Scheint mir etwas wenig.

Danke und Gruß

        
Bezug
Körperisomorphismus von C: Antwort
Status: (Antwort) fertig Status 
Datum: 21:03 Do 23.11.2006
Autor: zahlenspieler

Hallo [mm] peter_d, [/mm]
> [mm]\text{Zeigen Sie: Die Konjugationsabbildung}[/mm]
>  
> [mm]\bar{\cdot}:\mathbb{C} \to \mathbb{C},\ z=a+bi \mapsto \bar{z}=a-bi[/mm]
>  
> [mm]\text{ist ein Körperisomorphismus von }\mathbb{C}\text{; insbesondere gilt für alle }z_1, z_2 \in \mathbb{C}[/mm]
>  
> [mm]\overline{z_1+z_2}=\bar{z_1}+\bar{z_2}\text{\qquad\qquad und \qquad\qquad} \overline{z_1\cdot z_2} = \bar{z_1} \cdot \bar{z_2}[/mm]
>  
> Hallo.
> Wie man da den Körperisomorphismus beweisen soll, habe ich
> ehrlicbh gesagt keine Ahnung.

Zeige einfach die Beziehungen ("insbesondere ...."). Du bist schon auf der richtigen Spur.
Tip: Was passiert, wenn Du die Konjugierte der konjugierten einer Zahl bildest :-)?

>  Zum zweiten:
>  [mm]\overline{(a+bi)+(c+di)} = (a-bi) + (c-di) = \overline{a+bi} + \overline{c+di}[/mm]
>  
> und analog das zweite.
> Geht das so. Wohl nicht oder? Scheint mir etwas wenig.

Warum :-)? Was "vermißt" Du?
Mfg
zahlenspieler

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Lineare Algebra"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorkurse.de
[ Startseite | Mitglieder | Teams | Forum | Wissen | Kurse | Impressum ]