www.vorkurse.de
Ein Projekt von vorhilfe.de
Die Online-Kurse der Vorhilfe

E-Learning leicht gemacht.
Hallo Gast!einloggen | registrieren ]
Startseite · Mitglieder · Teams · Forum · Wissen · Kurse · Impressum
Forenbaum
^ Forenbaum
Status Mathe-Vorkurse
  Status Organisatorisches
  Status Schule
    Status Wiederholung Algebra
    Status Einführung Analysis
    Status Einführung Analytisc
    Status VK 21: Mathematik 6.
    Status VK 37: Kurvendiskussionen
    Status VK Abivorbereitungen
  Status Universität
    Status Lerngruppe LinAlg
    Status VK 13 Analysis I FH
    Status Algebra 2006
    Status VK 22: Algebra 2007
    Status GruMiHH 06
    Status VK 58: Algebra 1
    Status VK 59: Lineare Algebra
    Status VK 60: Analysis
    Status Wahrscheinlichkeitst

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Gruppe, Ring, Körper" - Körpererweiterung, Char.
Körpererweiterung, Char. < Gruppe, Ring, Körper < Algebra < Algebra+Zahlentheo. < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Gruppe, Ring, Körper"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Körpererweiterung, Char.: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 18:35 Di 05.01.2010
Autor: kunzmaniac

Aufgabe
Sei K ein Körper der Charakteristik [mm] $\neq [/mm] 2$.
Jede Körpererweiterung K/F mit Grad 2 wird durch Adjunktion einer Quadratwurzel erhalten.

Hallo,

d.h. $K = F(d)$ mit [mm] $d^2 \in [/mm] F$ geeignet. Ich wollte eigentlich über das Mipo gehen, aber die Erweiterung muss ja nicht zwangsläufig algebraisch sein.
Der Grad von K/F ist 2, also ist K ein 2-dim F-Vektorraum.
d.h. jedes Element aus K lässt sich schreiben als:
$a+b*d$ mit $a,b [mm] \in [/mm] F$.
Im Quadrat ergibt das: [mm] $a^2+2*a*b*d+b^2*d^2$, [/mm] also müsste [mm] $d^2 [/mm] = d$ also 1 oder 0 (dann aber nicht Grad 2), oder [mm] $d^2 \in [/mm] F$ sein.
Stimmt das so in etwa? Wenn ja: Wo fließt hier die Charakteristik ein?

        
Bezug
Körpererweiterung, Char.: Antwort
Status: (Antwort) fertig Status 
Datum: 21:32 Di 05.01.2010
Autor: felixf

Hallo!

> Sei K ein Körper der Charakteristik [mm]\neq 2[/mm].
>  Jede
> Körpererweiterung K/F mit Grad 2 wird durch Adjunktion
> einer Quadratwurzel erhalten.
>  
> d.h. [mm]K = F(d)[/mm] mit [mm]d^2 \in F[/mm] geeignet.

Genau.

> Ich wollte eigentlich
> über das Mipo gehen, aber die Erweiterung muss ja nicht
> zwangsläufig algebraisch sein.

Doch? Jede endliche Erweiterung ist algebraisch!

>  Der Grad von K/F ist 2, also ist K ein 2-dim
> F-Vektorraum.

Genau.

>  d.h. jedes Element aus K lässt sich schreiben als:
>  [mm]a+b*d[/mm] mit [mm]a,b \in F[/mm].

Was ist $d$ bei dir? Wenn du das obige $d$ meinst: das musst du doch erstmal konsturieren! Das hast du noch nicht!

> Im Quadrat ergibt das: [mm]a^2+2*a*b*d+b^2*d^2[/mm], also müsste
> [mm]d^2 = d[/mm] also 1 oder 0 (dann aber nicht Grad 2), oder [mm]d^2 \in F[/mm]
> sein.

?!

> Stimmt das so in etwa?

Nein.

Mal zurueck zur Erweiterung $F / K$. Nimm dir irgendein $x [mm] \in [/mm] F [mm] \setminus [/mm] K$. Dann hast du doch den Koerperturm $K [mm] \subsetneqq [/mm] K(x) [mm] \subseteq [/mm] F$. Kann $K(x) [mm] \subsetneqq [/mm] F$ gelten? (Nein, kann es nicht: damit ist $F = K(x)$.)

Dieses $x$ hat nun ein Minimalpolynom; etwa [mm] $T^2 [/mm] + a T + b$ mit $a, b [mm] \in [/mm] K$. Kannst du $x$ durch $x + c$  mit $c [mm] \in [/mm] K$ ersetzen, so dass $x + c$ ein Minimalpolynom von der Form [mm] $T^2 [/mm] + [mm] \hat{b}$ [/mm] hat mit [mm] $\hat{b} \in [/mm] K$? Und gilt $K(x) = K(x + c)$?

LG Felix


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Gruppe, Ring, Körper"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorkurse.de
[ Startseite | Mitglieder | Teams | Forum | Wissen | Kurse | Impressum ]