www.vorkurse.de
Ein Projekt von vorhilfe.de
Die Online-Kurse der Vorhilfe

E-Learning leicht gemacht.
Hallo Gast!einloggen | registrieren ]
Startseite · Mitglieder · Teams · Forum · Wissen · Kurse · Impressum
Forenbaum
^ Forenbaum
Status Mathe-Vorkurse
  Status Organisatorisches
  Status Schule
    Status Wiederholung Algebra
    Status Einführung Analysis
    Status Einführung Analytisc
    Status VK 21: Mathematik 6.
    Status VK 37: Kurvendiskussionen
    Status VK Abivorbereitungen
  Status Universität
    Status Lerngruppe LinAlg
    Status VK 13 Analysis I FH
    Status Algebra 2006
    Status VK 22: Algebra 2007
    Status GruMiHH 06
    Status VK 58: Algebra 1
    Status VK 59: Lineare Algebra
    Status VK 60: Analysis
    Status Wahrscheinlichkeitst

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Uni-Analysis" - Körperaxiome
Körperaxiome < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Analysis"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Körperaxiome: Knifflige Frage
Status: (Frage) beantwortet Status 
Datum: 00:20 Mi 03.11.2004
Autor: SturerPauker

Hi,

folgendes zu beweisen

1] (-a)b = -(ab)

2] (-a)(-b) = ab

Klingt banal, ist es aber nicht. Wir dürfen nur die Körperaxiome (A1-A4, M1-M4, D) anwenden, um das zu bewesien. Ich frage mich , wie ich das Minus aus der Klammer heraus bekomme. Wir dürfen zwar die Konvention a + (-b) = a-b verwenden, aber nicht -(-a) = a (was ja auch keine Konvention ist, sondern zu beweisen wäre, was ich ebenfalls nicht hinbekomme).

Wer kann mir helfen? wäre super, lg

Andi

(Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.)

        
Bezug
Körperaxiome: Antwort
Status: (Antwort) fertig Status 
Datum: 02:55 Mi 03.11.2004
Autor: Marcel

Hallo Andi,

> Hi,
>  
> folgendes zu beweisen
>  
> 1] (-a)b = -(ab)
>
> 2] (-a)(-b) = ab
>  
> Klingt banal, ist es aber nicht. Wir dürfen nur die
> Körperaxiome (A1-A4, M1-M4, D) anwenden, um das zu
> bewesien. Ich frage mich , wie ich das Minus aus der
> Klammer heraus bekomme. Wir dürfen zwar die Konvention a +
> (-b) = a-b verwenden, aber nicht -(-a) = a (was ja auch
> keine Konvention ist, sondern zu beweisen wäre, was ich
> ebenfalls nicht hinbekomme).

Ich gebe dir jetzt mal ein Skript an, wo wir die Körperaxiome aufgeschrieben haben, auf die ich im Folgenden Verweise:
[]Analysis-Skript [mm] $\to$ [/mm] Anfang Kapitel 2

Vorbemerkung: Im folgenden sprechen wir von Inversen bzw. dem inversen Element, wobei dies stets bzgl. "+" gemeint ist.

Zunächst:
Wir zeigen zuerst:
[mm] $(\star)$ [/mm] Für jedes $x [mm] \in [/mm] K$, wobei $K$ Körper, gibt es genau ein Inverses (bzgl. "+").
Beweis:
Die Existenz ist (siehe Skript) nach K.5 gesichert. Ist nun [mm] $\hat{x}$ [/mm] ein weiteres inverses Element zu $x [mm] \in [/mm] K$, so folgt:
[m]\hat{x}\stackrel{K.3}{=}\hat{x}+0_K\stackrel{K.1}{=}0_k+\hat{x}[/m]

[m]\stackrel{K.5}{=}(x+(-x))+\hat{x}\stackrel{K.1}{=}((-x)+x)+\hat{x}[/m]

[m]\stackrel{K.2}{=}(-x)+\underbrace{(x+\hat{x})}_{=0_K,\;da\,\,\hat{x}\,\,invers\,\,zu\,\,x}[/m]

[m]=(-x)+0_K\stackrel{K.3}{=}-x[/m]

Jetzt zu 1] Seien $a,b [mm] \in [/mm] K$ und $K$ ein Körper.
Es ist klar, dass $ab [mm] \in [/mm] K$. Nach K.5 ist $-(ab)$ ein Element von $K$, so dass:
[mm] $ab+(-(ab))=ab-ab=0_K$ [/mm] gilt, wobei [mm] $0_K$ [/mm] das Nullelement von $K$ sei (existiert nach K.3).

Wegen [mm] $(\star)$ [/mm] genügt es, zu zeigen, dass nun auch:
[mm] $ab+((-a)b)=0_K$ [/mm] gilt. (Beachte, dass wegen $a [mm] \in [/mm] K$ auch $-a [mm] \in [/mm] K$ gilt (nach K.5) und daher auch $(-a)b [mm] \in [/mm] K$.)

Zeigen wir dies nun:
Es gilt:
[m]ab+((-a)b)\stackrel{K.1}{=}ba+b*(-a)\stackrel{K.6}{=}b*(a+(-a))[/m]

[m]\stackrel{K.5}{=}b*0_K\stackrel{Skript,\,\,Satz\,\,2.4}{=}0_K[/m].

(Beweis zu Satz 2.4:
Sei $x [mm] \in [/mm] K$. Dann folgt:
[mm] $0_K\stackrel{K.5}{=}x*0_k+(-(x*0_K))\stackrel{K.3}{=}x*(0_K+0_K)+(-(x*0_K))$ [/mm]

[m]\stackrel{K.6}{=}(x*0_K+x*0_k)+(-(x*0_k))\stackrel{K.2}{=}x*0_K+(x*0_k+(-(x*0_k)))[/m]

[mm] $\stackrel{K.5}{=}x*0_k+0_K\stackrel{K.3}{=}x*0_K$) [/mm]

Wegen [mm] $(\star)$ [/mm] folgt die Behauptung, nämlich:
Wir haben nämlich gezeigt, dass $(-a)b$ auch invers zu $ab$ ist, und damit:
$-(ab)=(-a)b$

Zu 2]
Es gilt:
[m](-a)*(-b)\stackrel{Aufgabenteil 1}{=}-(a*(-b))\stackrel{K.1}{=}-((-b)*a)\stackrel{Aufgabenteil 1}{=}-(-(b*a))\stackrel{K.1}{=}-(-(ab))[/m], also:
[mm] $(\star \star)$ [/mm] $(-a)*(-b)=-(-(ab))$

Nun ist aber $-(-(ab))$ das Inverse zu $-(ab)$ wegen K.5.
Ferner gilt:
[mm] $-(ab)+(ab)\stackrel{K.1}{=}(ab)+(-(ab))\stackrel{K.5}{=}0_K$, [/mm] d.h. sowohl $ab$ als auch $-(-(ab))=(-a)*(-b)$ sind invers zu [mm] $-(ab)\in [/mm] K$, und wegen [mm] $(\star)$ [/mm] folgt:
[mm] $ab=-(-(ab))\stackrel{(\star \star)}{=}(-a)*(-b)$ [/mm]

Viele Grüße,
Marcel

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Analysis"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorkurse.de
[ Startseite | Mitglieder | Teams | Forum | Wissen | Kurse | Impressum ]