www.vorkurse.de
Ein Projekt von vorhilfe.de
Die Online-Kurse der Vorhilfe

E-Learning leicht gemacht.
Hallo Gast!einloggen | registrieren ]
Startseite · Mitglieder · Teams · Forum · Wissen · Kurse · Impressum
Forenbaum
^ Forenbaum
Status Mathe-Vorkurse
  Status Organisatorisches
  Status Schule
    Status Wiederholung Algebra
    Status Einführung Analysis
    Status Einführung Analytisc
    Status VK 21: Mathematik 6.
    Status VK 37: Kurvendiskussionen
    Status VK Abivorbereitungen
  Status Universität
    Status Lerngruppe LinAlg
    Status VK 13 Analysis I FH
    Status Algebra 2006
    Status VK 22: Algebra 2007
    Status GruMiHH 06
    Status VK 58: Algebra 1
    Status VK 59: Lineare Algebra
    Status VK 60: Analysis
    Status Wahrscheinlichkeitst

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Gruppe, Ring, Körper" - Körper nachweisen
Körper nachweisen < Gruppe, Ring, Körper < Algebra < Algebra+Zahlentheo. < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Gruppe, Ring, Körper"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Körper nachweisen: Hilfestellung
Status: (Frage) beantwortet Status 
Datum: 09:18 Di 19.01.2010
Autor: Mathegirl

Aufgabe
[mm] \IK [/mm] ist ein Körper und [mm] x,a,b,c\in \IK. [/mm]
Zeige:

1.) [mm] det\pmat{ x & 1 & 1 \\ 1 & x & 1 \\ 1 & 1 & x } [/mm] = [mm] (x-1)^2(x+2) [/mm]

2) [mm] det\pmat{ a^2+1 & ab & ac \\ ab & b^2+1 & bc \\ ac & bc & c^2+1 }= a^2+b^2+c^2+1 [/mm]  

Kann mir villeicht jemand helfen, diese Aufgabe zu lösen?
Ich konnte sehr lange nichts für dieses themengebiet machen und bin gerade dabei mich wieder einzulesen, wie sowas funktionieren soll.

Über Hinweise und Hilfen zur Lösung und iwe man damit beginnt wäre ich sehr dankbar!


Gruß
Mathegirl

        
Bezug
Körper nachweisen: Antwort
Status: (Antwort) fertig Status 
Datum: 09:50 Di 19.01.2010
Autor: schachuzipus

Hallo Mathegirl,

bei deinen zahlreichen Fragen weiß man oft nicht genau, wo man mit der Hilfe ansetzen soll.

Vllt. kannst du mal deinen mathemat. Background in deinem Profil bearbeiten.

Bist du Studentin? Oder ist das Stoff aus der 13? Oder oder ...

Trage das bitte mal nach ...


> [mm]\IK[/mm] ist ein Körper und [mm]x,a,b,c\in \IK.[/mm]
>  Zeige:
>  
> 1.) [mm]det\pmat{ x & 1 & 1 \\ 1 & x & 1 \\ 1 & 1 & x }[/mm] =
> [mm](x-1)^2(x+2)[/mm]
>  
> 2) [mm]det\pmat{ a^2+1 & ab & ac \\ ab & b^2+1 & bc \\ ac & bc & c^2+1 }= a^2+b^2+c^2+1[/mm]
> Kann mir vielleicht jemand helfen, diese Aufgabe zu lösen?
> Ich konnte sehr lange nichts für dieses themengebiet
> machen und bin gerade dabei mich wieder einzulesen, wie
> sowas funktionieren soll.

Dann solltest du das nachholen. Der Matheraum kann dir kein Buch und keine VL ersetzen, das ist auch nicht Sinn der Sache ...

Du machst es dir hier oft sehr leicht ...

Ohne Eigeninitiative und eigenes Probieren kommst du in Mathe nicht weit.

Wenn du dir nur alles vormachen und -rechnen lässt, bist du spätestens in der Klausur aufgeschmissen ...


Um Determinanten zu berechnen, gibt es diverse Möglichkeiten.

Allg. die Entwicklung nach Laplace.

Für [mm] $2\times [/mm] 2$-Matrizen gibt es eine hübsche kleine Formel --> nachschlagen, steht in jedem LA-Buch oder auf Wikipedia.

Für [mm] $3\times [/mm] 3$-Matrizen gibts die Regel von Sarrus, die kannst du auch überall mit zahlreichen Bspen nachschlagen.

Oft ist es hilfreich, die Matrix, deren Det. es zu berechnen gilt, vorher geeignet umzuformen, so dass in einer Zeile/Spalte möglichst viele Nullen entstehen. Diese Summanden fallen dann bei der Laplaceentwicklung nicht ins Gewicht ...

Hierbei sind aber []Rechenregeln für Determinanten zu beachten.

>  
> Über Hinweise und Hilfen zur Lösung und iwe man damit
> beginnt wäre ich sehr dankbar!

Nun hast du einiges an Hinweisen und Tipps, unter welchen Begriffen du nachschlagen musst.

Nun präsentiere uns mal einen Ansatz ...

>  
>
> Gruß
>  Mathegirl

LG

schachuzipus


Bezug
                
Bezug
Körper nachweisen: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 10:10 Di 19.01.2010
Autor: Mathegirl

Vielen Dank, ich werde das mal durchgehen und dann hier meine Lösungsansätze schreiben.

ich möchte auch das hier nicht vorgerechnet bekommen, denn dadurch verstehe ich es auch nicht. Bin bloß froh über einige Tipps oder Ansätze zur Lösung und vor allem über die Korrektur!



Bezug
                        
Bezug
Körper nachweisen: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 10:14 Di 19.01.2010
Autor: schachuzipus

Hallo nochmal,

> Vielen Dank, ich werde das mal durchgehen und dann hier
> meine Lösungsansätze schreiben.
>  
> ich möchte auch das hier nicht vorgerechnet bekommen, denn
> dadurch verstehe ich es auch nicht. Bin bloß froh über
> einige Tipps oder Ansätze zur Lösung und vor allem über
> die Korrektur!

Das ist ein guter Vorsatz, mal sehen, ob und wie du das umsetzt.

Bleibt die Bitte nach der Aktualisierung in deinem Profil.

Zudem stellt sich dem geneigten Leser die Frage, was die Berechnung von Determinanten mit "Körper nachweisen", wie es in deiner Überschrift steht, zu tun hat...

Bei "Körper anchweisen" denke *ich* eher daran, dass man zeigen soll, dass irgendeine Menge mit 2 Verknüpfungen ein Körper ist o.ä.

Aber einen Zusammenhang zur bloßen Berechnung von Determinanten zu erkennen, fällt mir nicht leicht.

Soll heißen: Wähle passendere Überschriften zu deinen Aufgaben/Fragen ...

LG uns gutes Gelingen

schachuzipus

>  
>  


Bezug
                                
Bezug
Körper nachweisen: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 14:00 Di 19.01.2010
Autor: Mathegirl

So, ich galube, ich habe diese Aufgabe jetzt gut hinbekommen. Allerdings schreibe ich sie hier jetzt nicht nochmal, da bisher 3 mal die Seite kurz bevor ich fertig war, abgestürzt ist. Vielleicht schreibe ich die Aufgabe nachher noch einmal hier rein.



Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Gruppe, Ring, Körper"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorkurse.de
[ Startseite | Mitglieder | Teams | Forum | Wissen | Kurse | Impressum ]