www.vorkurse.de
Ein Projekt von vorhilfe.de
Die Online-Kurse der Vorhilfe

E-Learning leicht gemacht.
Hallo Gast!einloggen | registrieren ]
Startseite · Mitglieder · Teams · Forum · Wissen · Kurse · Impressum
Forenbaum
^ Forenbaum
Status Mathe-Vorkurse
  Status Organisatorisches
  Status Schule
    Status Wiederholung Algebra
    Status Einführung Analysis
    Status Einführung Analytisc
    Status VK 21: Mathematik 6.
    Status VK 37: Kurvendiskussionen
    Status VK Abivorbereitungen
  Status Universität
    Status Lerngruppe LinAlg
    Status VK 13 Analysis I FH
    Status Algebra 2006
    Status VK 22: Algebra 2007
    Status GruMiHH 06
    Status VK 58: Algebra 1
    Status VK 59: Lineare Algebra
    Status VK 60: Analysis
    Status Wahrscheinlichkeitst

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Uni-Lineare Algebra" - Körper mit vier Elementen
Körper mit vier Elementen < Lineare Algebra < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Lineare Algebra"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Körper mit vier Elementen: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 20:02 Do 27.07.2006
Autor: Centaur

Aufgabe
Es sei K=({0,1,a,b}, +, *) ein Körper mit vier Elementen. Bestimmen Sie für alle Paare von Elementen aus K das Produkt in K.

Hallo allerseits ich habe zu dieser nicht allzu schweren Aufgabe, ein paar Fragen und würde mich über eine Antwort sehr freuen.

Ersteinmal folgt aus der Aussage "Körper mit vier Elementen" schon das a, b ungleich 0 und ungleich 1 sind?

Ich habe mir zur Lösung überlegt, dass es 10 Paare geben muss, deren multiplikatives Ergebnis ich für 0 und 1 kenne. Auch a*b konnte ich durch Widerspruch als 1 errechnen.

Das Einzige was mir noch fehlt ist, dass ich zwar weiß, dass a*a= b sein soll, ich aber die Gleichung a*a=1 nicht zu einem Widerspruch geführt bekomme.  a*a=b und a*a=a dagegen schon. (Analoges schaffe ich auch nicht für b*b)

Kann mir jemand den entscheidendenen Kniff verraten?

Christoph


Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.



        
Bezug
Körper mit vier Elementen: Antwort
Status: (Antwort) fertig Status 
Datum: 22:52 Do 27.07.2006
Autor: beutelsbacher

Hi,
zunächst einmal folgt aus der Aussage "Körper mit vier Elementen" scho, dass a, b ungleich 0 und ungleich 1 sind, ansonsten wär es ja ein Körper mit weniger als 4 Elementen, richtig?
Du konntest schon a*b=1 zeigen. Daraus folgt dann aber doch, dass [mm] b=a^{-1} [/mm] und [mm] a=b^{-1} [/mm] ( da K ein Körper ist, ist das Inverse ja eindeutig festgelegt) ist. Angenommen jetzt, dass a*a=1 gilt. Dann müssten aber [mm] a=a^{-1} [/mm] sein, was im Widerspruch zu [mm] a=b^{-1} [/mm] steht...
Ich find meine Begründung logisch ;-)
Viel Erfolg noch...

Bezug
        
Bezug
Körper mit vier Elementen: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 18:00 Fr 28.07.2006
Autor: Centaur

Nein du hast recht es ist absolut logisch was du sagst und auch der entscheidende Schritt um den es mir ging. Also Danke für die Antwort.

Ich bin nicht drauf gekommen, weil ich mich immer nur darauf konzentriert habe einen Widerspruch aus a*a zu konstruieren ohne auf bisher Bekanntes zurückzugreifen.

Also nochmals danke.

Chris

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Lineare Algebra"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorkurse.de
[ Startseite | Mitglieder | Teams | Forum | Wissen | Kurse | Impressum ]