www.vorkurse.de
Ein Projekt von vorhilfe.de
Die Online-Kurse der Vorhilfe

E-Learning leicht gemacht.
Hallo Gast!einloggen | registrieren ]
Startseite · Mitglieder · Teams · Forum · Wissen · Kurse · Impressum
Forenbaum
^ Forenbaum
Status Mathe-Vorkurse
  Status Organisatorisches
  Status Schule
    Status Wiederholung Algebra
    Status Einführung Analysis
    Status Einführung Analytisc
    Status VK 21: Mathematik 6.
    Status VK 37: Kurvendiskussionen
    Status VK Abivorbereitungen
  Status Universität
    Status Lerngruppe LinAlg
    Status VK 13 Analysis I FH
    Status Algebra 2006
    Status VK 22: Algebra 2007
    Status GruMiHH 06
    Status VK 58: Algebra 1
    Status VK 59: Lineare Algebra
    Status VK 60: Analysis
    Status Wahrscheinlichkeitst

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Gruppe, Ring, Körper" - Körper Permutationen
Körper Permutationen < Gruppe, Ring, Körper < Algebra < Algebra+Zahlentheo. < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Gruppe, Ring, Körper"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Körper Permutationen: Aufgabe
Status: (Frage) überfällig Status 
Datum: 15:03 So 09.12.2007
Autor: jacques2303

Aufgabe
Sei [mm] \IK [/mm] ein Körper und P: [mm] S_n \to \IK^{n \times n} [/mm] die Abbildung, die einer Permutation [mm] \pi \in S_n [/mm] die Permutationsmatrix [mm] P(\pi):=((a_{ij})) [/mm] mit [mm] a_{ij}:=\delta_{i\pi(j)} [/mm] für i,j = 1,....,n zuordnet. [mm] (\delta [/mm] ist das Kronecker-Symbol). Es soll gezeigt werden, dass P die folgenden Eigenschaften hat:
a) [mm] P(\pi°\gamma)=P(\pi) [/mm] * [mm] P(\gamma) [/mm] für alle [mm] \pi, \gamma \in S_n [/mm]
b) [mm] P(\pi^{-1})=P(\pi)^T [/mm] (T = die transponierte Matrix)
c) P ist injektiver Homomorphismus von [mm] S_n [/mm] in die Gruppe GL(n, [mm] \IK) [/mm]

Hallo zusammen.

Mir  ist bei dieser Aufgabe nicht klar, wie ich die einzelnen Beweise durchführen soll. Hat jemand eine Idee?

LG, jacques2303

        
Bezug
Körper Permutationen: Fälligkeit abgelaufen
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 20:42 Di 11.12.2007
Autor: matux

$MATUXTEXT(ueberfaellige_frage)
Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Gruppe, Ring, Körper"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorkurse.de
[ Startseite | Mitglieder | Teams | Forum | Wissen | Kurse | Impressum ]