www.vorkurse.de
Ein Projekt von vorhilfe.de
Die Online-Kurse der Vorhilfe

E-Learning leicht gemacht.
Hallo Gast!einloggen | registrieren ]
Startseite · Mitglieder · Teams · Forum · Wissen · Kurse · Impressum
Forenbaum
^ Forenbaum
Status Mathe-Vorkurse
  Status Organisatorisches
  Status Schule
    Status Wiederholung Algebra
    Status Einführung Analysis
    Status Einführung Analytisc
    Status VK 21: Mathematik 6.
    Status VK 37: Kurvendiskussionen
    Status VK Abivorbereitungen
  Status Universität
    Status Lerngruppe LinAlg
    Status VK 13 Analysis I FH
    Status Algebra 2006
    Status VK 22: Algebra 2007
    Status GruMiHH 06
    Status VK 58: Algebra 1
    Status VK 59: Lineare Algebra
    Status VK 60: Analysis
    Status Wahrscheinlichkeitst

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Gruppe, Ring, Körper" - Körper
Körper < Gruppe, Ring, Körper < Algebra < Algebra+Zahlentheo. < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Gruppe, Ring, Körper"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Körper: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 10:38 Mo 05.04.2010
Autor: andi7987

Aufgabe
Es sei K ein Körper mit der Addition +, der Multiplikation *, dem Einselement e und dem Nullelement 0. Zeigen Sie, dass man sich den Verknüpfungen a [mm] \oplus [/mm] b= a + b + e und a [mm] \otimes [/mm] b = a+ b + a * b, wieder einen Körper* erhält!  

Ich weiß, dass es hier diese 9 Regeln des Körpers gibt und man diese darauf anwenden muss.

Aber wie funktioniert das genau?

        
Bezug
Körper: Antwort
Status: (Antwort) fertig Status 
Datum: 11:25 Mo 05.04.2010
Autor: angela.h.b.


> Es sei K ein Körper mit der Addition +, der Multiplikation
> *, dem Einselement e und dem Nullelement 0. Zeigen Sie,
> dass man sich den Verknüpfungen a [mm]\oplus[/mm] b= a + b + e und
> a [mm]\otimes[/mm] b = a+ b + a * b, wieder einen Körper* erhält!
> Ich weiß, dass es hier diese 9 Regeln des Körpers gibt
> und man diese darauf anwenden muss.
>  
> Aber wie funktioniert das genau?

Hallo,

es geht jetzt also darum, ob die Menge K zusammen mit den beiden neuen Verknüpfungen auch ein Körper ist.
Ersetze in den Körperaxiomen überall + durch [mm] \oplus [/mm] und * durch [mm] \otimes [/mm] und zeige dann die Gültigkeit der Axiome.

Ich mache Dir mal eins vor:

zu zeigen ist u.a. die Kommutativität der Addition, daß also für alle [mm] a,b\in [/mm] K gilt: [mm] a\oplus [/mm] b= [mm] b\oplos [/mm] a.

Bew.: Seien [mm] a,b\in [/mm] K.

Es ist

[mm] a\oplus [/mm] b= a+b+e [mm] \qquad [/mm] nach Def.  [mm] \oplus. [/mm]

= b+a + e [mm] \qquad [/mm] (Kommutativität der Addition in (K,+,*))

[mm] =b\oplus [/mm] a [mm] \qquad [/mm] nach Def. von [mm] \oplus [/mm]

In dem Stile sind die ganzen anderen Axiome auch zu erledigen.

Gruß v. Angela




Bezug
                
Bezug
Körper: Frage (reagiert)
Status: (Frage) reagiert/warte auf Reaktion Status 
Datum: 11:29 Mo 05.04.2010
Autor: andi7987

Mmh, ja scheint einfach zu sein!

Aber ganz klar ist mir das nicht bzw. wieso das so geht! :-(

Einfach umdrehen!?

Bezug
                        
Bezug
Körper: Antwort
Status: (Antwort) fertig Status 
Datum: 11:36 Mo 05.04.2010
Autor: angela.h.b.


> Mmh, ja scheint einfach zu sein!
>  
> Aber ganz klar ist mir das nicht bzw. wieso das so geht!
> :-(
>  
> Einfach umdrehen!?

Hallo,

stell Deine Frage bitte präziser.

Ich weiß jetzt gar nicht, worauf genau Du Dich beziehst...

Ich habe Dir bei den durchgeführten Rechnemanövern doch jeweils die Begründung dazugeschrieben (und für eine Hausübung oder Klausur mußt Du das auch tun).

Gruß v. Angela


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Gruppe, Ring, Körper"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorkurse.de
[ Startseite | Mitglieder | Teams | Forum | Wissen | Kurse | Impressum ]